
Ph.D. DISSERTATION

Edge-Cloud Cooperative Platform
for Live Video Analytics

Applications

‰‹⌅ D$ Ñ� Q©D ⌅\

„¿-t|∞‹ ⌘%� �´¸

FEBRUARY 2024

Department of Computer Science & Engineering

College of Engineering

Seoul National University

Juheon Yi

Abstract

Live video analytics enable various useful services including tra�c monitor-

ing, surveillance, person identification, and AR/MR. Despite the huge potential,

enabling robust and e�cient live video analytics is non-trivial. The core chal-

lenge lies in running the unique workload of analyzing the live video stream

in real-time and seamlessly delivering the analysis results to the user for in-

teraction on resource-constrained mobile devices. Such workload often requires

a continuous and simultaneous execution of multiple Deep Neural Networks

(DNNs) on high-resolution videos. In this dissertation, we (i) characterize the

workload of emerging live video analytics apps, and (ii) design an edge-cloud

cooperative platform to support the workload. Specifically, we perform end-to-

end optimization across the edge, network, and cloud to support the workload

with real-time throughput, low per-frame latency, and high accuracy.

We first design EagleEye, an AR system to identify missing person(s) in

large, crowded urban spaces in real-time. Person identification imposes a unique

workload of running a series of complex DNNs multiple times per each high-

resolution video frame. Our key approach is Content-Adaptive Parallel Exe-

cution, which adapts the multi-DNN face identification pipeline depending on

recognition di�culty (e.g., face resolution, pose) and cooperatively execute the

workload at low latency using heterogeneous processors on mobile and cloud.

We also design a novel ICN and its training methodology that utilize the probes

of the target to recover missing facial details in the LR faces to improve the

accuracy of the state-of-the-art face identification techniques. Our results show

that ICN significantly enhances LR face recognition accuracy (true positive

by 78% with only 14% false positive), and EagleEye accelerates the latency by

9.07◊ with only 108 KBytes of data o�oaded to the cloud.

i

We next design Pendulum, an end-to-end live video analytics system with a

novel network-compute joint scheduling. In practical scenarios, resource bot-

tleneck frequently alternates across the network (video streaming) and the

compute (DNN inference) stages due to dynamic scene content and resource

availability. However, prior single-stage scheduling systems su�er from through-

put/accuracy fluctuation and resource wastage due to over-provisioning. To

overcome the limitations, we newly discover the interplay between video bitrate

and DNN complexity. Based on this, we design an end-to-end system composed

of (i) a joint scheduling mechanism (to estimate network, compute resource

demands and availability as well as control resource usages) and (ii) a joint

resource scheduler. Evaluation with various videos and state-of-the-art DNNs

show that Pendulum achieves up to 0.64 mIoU gain and 1.29◊ higher throughput

than state-of-the-art baselines. Pendulum also achieves near-optimal multi-user

resource scheduling performance with minimal search overhead, achieving 25%

cost reduction compared to network-compute decoupled scheduling baseline.

Finally, we design Heimdall, a mobile platform to support multi-DNN and

rendering concurrency on mobile GPUs. We analyze that existing mobile deep

learning frameworks are designed for single DNN execution in isolated environ-

ments and fail to support multi-DNN and rendering concurrent workload (e.g.,

inference latency increases from 59.93 to 1181 ms, rendering frame rate drops

from 30 to 12 fps). While multi-task scheduling has been actively studied for

desktop GPUs (e.g., parallelization, preemption), applying it to mobile GPUs

is challenging due to limited architectural support and memory bandwidth.

To tackle the challenge, we design a Pseudo-Preemption mechanism which i)

breaks down the bulky DNN into smaller units, and ii) prioritizes and flexibly

schedules concurrent GPU tasks. Heimdall e�ciently supports multiple MR app

scenarios, enhancing the frame rate from 11.99 to 29.96 fps while reducing the

ii

worst-case DNN inference latency by up to ¥15◊ compared to the baseline

multi-threading approach.

keywords: Live video analytics, Edge-cloud cooperative system, Mo-

bile/edge AI

student number: 2020-39481

iii

Contents

Abstract i

Contents iv

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation and Challenges . 1

1.2 Proposed Edge-Cloud Cooperative Platform 3

1.2.1 Design Goals . 3

1.2.2 Platform Architecture . 4

1.2.3 Key Solutions . 5

1.3 Contributions . 6

1.4 Dissertation Overview . 7

2 Motivational Studies 8

2.1 Applications and Requirements 8

2.1.1 Application Scenarios . 8

2.1.2 Workload Characterization 9

2.2 Challenges . 10

2.2.1 Complexity of the State-of-the-art DNNs 10

iv

2.2.2 Large Data Size and Compute of Each Analysis Task . . . 12

2.2.3 Alternating Resource Bottleneck from Dynamic Resource

Availability and Workload 13

2.2.4 Multi-Task Resource Contention 15

3 Related Work 18

3.1 Live Video Analytics Applications 18

3.2 On-Device Systems . 18

3.2.1 Mobile Deep Learning Frameworks 18

3.2.2 On-Device Continuous Mobile Vision 19

3.3 Cloud O�oading Systems . 19

3.3.1 O�oading for Continuous Mobile Vision 19

3.3.2 Adaptive Bitrate for Live Video Analytics 20

3.3.3 ML Serving in Edge/Cloud Server 20

3.3.4 Edge-Cloud cooperative Inference Systems 20

3.4 Tiny ML/E�cient Deep Learning 21

4 EagleEye: AR-based Person Identification in

Crowded Urban Spaces 22

4.1 Introduction . 22

4.2 Motivating Scenarios . 27

4.3 Preliminary Studies . 28

4.3.1 How Fast Can Humans Identify Faces? 28

4.3.2 How Accurate Can DNNs Identify Faces? 30

4.3.3 How Fast Can DNNs Identify Faces? 32

4.3.4 Summary . 33

4.4 EagleEye: System Overview . 33

4.4.1 Design Considerations . 33

4.4.2 Operational Flow . 34

v

4.5 Identity Clarification-Enabled Face Identification Pipeline 35

4.5.1 Face Detection . 36

4.5.2 Identity Clarification Network 36

4.5.3 Face Recognition and Service Provision 40

4.6 Real-Time Multi-DNN Execution 41

4.6.1 Workload Characterization 41

4.6.2 Content-Adaptive Parallel Execution 42

4.7 Implementation . 47

4.8 Evaluation . 48

4.8.1 Experiment Setup . 48

4.8.2 Performance Overview . 50

4.8.3 Identity Clarification Network 51

4.8.4 Content-Adaptive Parallel Execution 53

4.8.5 Performance for Varying Crowdedness 55

4.8.6 Performance on Other Mobile Devices 56

5 Pendulum: Network-Compute Joint Scheduling for E�cient

and Accurate Live Video Analytics 57

5.1 Introduction . 57

5.2 Limitations of Prior Works . 61

5.2.1 Limitations of Single-Stage Scheduling 61

5.2.2 Why Simple Combination of Two Schedulers Fails? 62

5.3 Our Approach . 63

5.3.1 Goals . 63

5.3.2 Key Idea: Joint Scheduling 64

5.3.3 Why is Joint Scheduling Possible? 65

5.3.4 Joint Scheduling Problem Formulation 67

5.4 Design Overview . 68

5.4.1 Challenges . 68

vi

5.4.2 Key Ideas . 69

5.4.3 System Architecture . 69

5.5 Joint Scheduling Mechanism . 70

5.5.1 Network-Compute Demand Profiler 71

5.5.2 Resource Availability Monitor 74

5.5.3 Joint Scheduling Knob Controller 76

5.6 Joint Scheduling Algorithm . 77

5.7 Evaluation . 80

5.7.1 End-to-End Improvement 82

5.7.2 Joint Scheduling on SOTA Systems 84

5.7.3 Performance on Various App Settings 84

5.7.4 Performance in Compute Bottleneck 85

5.7.5 Microbenchmarks . 86

6 Heimdall: Mobile GPU Coordination Platform for AR Appli-

cations 89

6.1 Introduction . 89

6.2 Analysis on GPU Contention . 93

6.3 Heimdall System Overview . 95

6.3.1 Approach . 95

6.3.2 Design Considerations . 97

6.3.3 System Architecture . 98

6.4 Preemption-Enabling DNN Analyzer 99

6.4.1 Overview . 99

6.4.2 Latency Profiling . 100

6.4.3 DNN Partitioning . 101

6.5 Pseudo-Preemptive GPU Coordinator 102

6.5.1 Overview . 102

6.5.2 Utility Function . 103

vii

6.5.3 Scheduling Problem and Policy 104

6.5.4 Greedy Scheduling Algorithm 106

6.6 Additional Optimizations . 107

6.6.1 Preprocessing and postprocessing 108

6.6.2 CPU Fallback Operators 108

6.7 Implementation . 109

6.8 Evaluation . 110

6.8.1 Experiment Setup . 110

6.8.2 Performance Overview . 110

6.8.3 DNN Partitioning/Coordination Overhead 112

6.8.4 Pseudo-Preemptive GPU Coordinator 112

6.8.5 Performance for Various App Scenarios 114

6.8.6 DNN Accuracy . 114

6.8.7 Energy Consumption Overhead 116

7 Conclusion 117

7.1 Summary . 117

7.2 Discussion . 118

7.2.1 Scalability and Generality of EagleEye to Other Workloads 118

7.2.2 Generality of Pendulum to Wider Network and System

Environments . 119

7.2.3 Impact of Hardware Evolution on Heimdall 120

7.3 Future Projection: Would the Importance of System Optimiza-

tion Persist? . 122

7.3.1 DNN complexity increase vs. hardware evolution 122

7.3.2 Video bitrate increase vs. network evolution 123

7.4 Future Works . 125

7.4.1 System Support for 3D Point Cloud Videos 125

7.4.2 App-RAN Cross-Layer Optimization 125

viii

Abstract (In Korean) 157

ix

List of Tables

1.1 Challenges and our proposed solutions. 6

2.1 DNN and rendering requirements for the example MR app sce-

narios. 10

2.2 DNNs for the above MR apps. Inference time is measured on

MACE over LG V50 (Adreno 640 GPU). 11

2.3 Complexity comparison between state-of-the-art DNNs and back-

bones. 12

4.1 Inference time of DNNs with TensorFlow-Lite running on LG

V50 (Qualcomm Adreno 640 GPU). 32

4.2 Complexity and latency of component DNNs. FLOPs are mea-

sured with tf.profiler.profile() function. 32

4.3 Average and standard deviation of the composition of each face

type in the test dataset. 48

5.1 Evaluation datasets. 81

6.1 Face detection and person segmentation accuracy (IoU) for the

AR emoji scenario. 115

x

List of Figures

1.1 Live video analytics application scenarios. 2

1.2 Edge-cloud cooperative platform architecture. 5

2.1 O�oading latency of multi-DNN face identification pipeline. . . . 12

2.2 Example bottleneck (colored in red) timelines. 14

2.3 Bitrate and workload (# of objects) for di�erent scenes. 14

2.4 Multi-DNN GPU contention. 16

2.5 Rendering-DNN GPU contention on MACE over LG V50 (im-

mersive online shopping scenario). 17

2.6 Rendering-DNN GPU contention on TF-Lite over Google Pixel

3 XL (criminal chasing scenario). 17

4.1 Example usage scenario of EagleEye: parent finding a missing

child. More examples in Chapter 4.2. 23

4.2 Multi-DNN face identification pipeline. 24

4.3 Human cognitive abilities on identifying faces in crowded scenes:

response time and accuracy. 29

4.4 Face verification accuracy. 31

4.5 Latency of face identification pipeline. 31

4.6 Feature map visualization for varying resolutions (points with

same color represents same identity). 31

xi

4.7 Operation of EagleEye in a nutshell. 34

4.8 EagleEye system overview. 35

4.9 GANs reconstruct realistic faces, but fail to preserve the face

identity. 36

4.10 Identity Clarification Network: overview. 37

4.11 Generator network architecture. 37

4.12 CDF of face distances for varying resolutions. 39

4.13 Edge-based background filtering. 43

4.14 Variation-Adaptive Face Recognition. 44

4.15 Spatial Pipelining on heterogeneous processors. 46

4.16 In-the-wild dataset examples. 48

4.17 EagleEye performance overview. 50

4.18 Performance of Identity Clarification Network. 51

4.19 Feature map visualization for ICN. 51

4.20 Reconstruction example of ICN. 52

4.21 Background filtering. 52

4.22 Example operation of Edge-Based Background Filtering. 53

4.23 Performance of Variation-Adaptive Face Recognition. 54

4.24 Spatial Pipelining performance. 54

4.25 End-to-end latency for varying crowdedness. 55

4.26 Latency evaluation on Google Pixel 3 XL. 56

5.1 Scenario: cloudlet-based person monitoring. 58

5.2 Performance analysis of network-only scheduling with EAAR [1]

(b: bottleneck, nb: no bottleneck). 61

5.3 Accuracy changes while running decoupled schedulers. C-1/2 and

N-1 denote compute and network scheduling events, respectively. 62

5.4 Single-stage vs. joint scheduling comparison. 64

5.5 Joint scheduling example for network bottleneck scenario. 65

xii

5.6 Illustration of the impact of the receptive field. 65

5.7 Example detection results (box and confidence) for di�erent crop

sizes around ground truth (GT) box. 65

5.8 Detection accuracy in low-bitrate video. 66

5.9 Segmentation accuracy in low-bitrate video. 67

5.10 Pendulum system architecture (Yellow: video analytics pipeline,

Green: Pendulum components). 70

5.11 Demand curves for di�erent scenes. Blue/red points: configs above/below

the accuracy requirement, green curve: Pareto-optimal configs. . 71

5.12 Accuracy gain from DNN backbone increase (D0 to D6) varies

depending on video bitrate. 73

5.13 App-side packet-level bandwidth estimation cannot know RAN’s

remaining bandwidth capacity. 75

5.14 RIC message format. 76

5.15 Iterative Max Cost Gradient algorithm example (2 iterations,

CG: cost gradient). 76

5.16 Bandwidth required to compensate �t inference latency di�ers

depending on the demand curve. 78

5.17 Throughput-accuracy comparison in network bottleneck scenario. 82

5.18 Testbed implementation. 82

5.19 Over-the-air performance. 82

5.20 Frame-wise latency comparison. 82

5.21 Joint scheduling on state-of-the-art systems. 83

5.22 Performance across various tasks & DNNs. 84

5.23 Performance for (res, backbone) knobs. 85

5.24 Performance in compute bottleneck. 85

5.25 Operation timeline when the compute becomes a bottleneck. . . 86

5.26 Demand profiler performance breakdown. 86

xiii

5.27 Performance under bandwidth fluctuation. 86

5.28 Impact of profiling interval on accuracy. 86

5.29 Performance of accuracy modeling. 87

5.30 Multi-user scheduling performance. 87

6.1 Multi-DNN GPU contention example. 94

6.2 System Architecture of Heimdall. 98

6.3 DNN inference latency with and without camera. 100

6.4 Operator-level latency distribution. 100

6.5 Camera frame rendering latency. 100

6.6 Example DNN latency profiling result on Google Pixel 3 XL. . . 100

6.7 Operation of DNN partitioning. 101

6.8 DNN inference latencies for varying partition sizes. 101

6.9 End-to-end DNN inference pipeline example for RetinaFace [2]

detector. 108

6.10 Performance overview of Heimdall on LG V50. 111

6.11 DNN partitioning overhead. 112

6.12 Performance comparison of GPU coordination policies. 113

6.13 Opportunistic CPU o�oading performance. 114

6.14 Performance of Heimdall for other AR app scenarios. 115

7.1 DNN inference complexity (assuming 1080p@30fps input) vs.

hardware capability (NPU: Apple A12-A17, GPU: Qualcomm

Adreno 630-740). 122

7.2 Video bitrate vs. network bandwidth (Green: target per-user ex-

perienced bandwidths of 4G, 5G, 6G, Blue: actual measurements

from existing traces [3, 4] and our own measurements). 124

xiv

Chapter 1

Introduction

1.1 Motivation and Challenges

Live video analytics is an emerging class of applications (apps) which ana-

lyzes the live video streams from mobile devices (e.g., smartphones, AR glasses,

CCTVs), delivers the analyzed results to the users, and enables real-time user

interaction. It enables various services including tra�c monitoring [5], surveil-

lance [6], person identification [7], and Augmented Reality (AR)/ Mixed Reality

(MR) [1,8] (see Chapter 2.1.1 for detailed scenarios).

Despite the potential, realizing robust and e�cient live video analytics apps

is highly challenging. The core challenge lies in supporting the unique work-

load of analyzing the live video stream in real-time and seamlessly delivering

the analysis results to the user for interaction on resource-constrained mobile

devices. Specifically, live video analytics app has the following computational

requirements. First, it needs to accurately analyze the live video stream as well

as the user behaviors (e.g., hand, gaze movement) for interaction, which of-

ten requires a continuous and simultaneous execution of multiple Deep Neural

Networks (DNNs) on high-resolution video streams (see Table 2.1). Second,

it should seamlessly synthesize and render the analysis results (e.g., bounding

1

(a) Criminal chasing. (b) Immersive online shop-

ping.

(c) Augmented interactive

workspace (source: [9]).

Figure 1.1: Live video analytics application scenarios.

boxes and trajectories over the video frames, virtual objects) over the analyzed

scenes for immersive user experiences. Finally, background DNN inference com-

putation and foreground UI rendering should be simultaneously performed in

real-time under resource constraints.

Supporting such concurrent multi-DNN and rendering workload incurs the

following technical challenges.

Challenge #1: Large data size and compute requirements per each

task (Chapter 2.2.2). Each analysis task requires a repetitive execution of

multiple DNNs over high-resolution videos. Due to large input data size and

high compute complexity of multiple DNNs, it is non-tivial to run the workload

both through on-device and cloud o�oading. For example, identifying distant

faces in criminal chasing scenario requires face detection on 1080p frame, and

face recognition per each face. It takes 8.6s and 3.4s for a frame with 17 faces,

mainly due to large number of DNN inferences and high network transmission

latency due to large frame size.

Challenge #2: Alternating bottlenecks from dynamic resource and

workload fluctuation (Chapter 2.2.3). The workload and resource avail-

ability independently fluctuate both within and across the edge device, network,

and cloud server. This incurs a complex, alternating resource bottleneck pat-

terns, incurring severe latency/accuracy fluctuation. For example, assume run-

2

ning a multi-DNN person analysis workload (composed of a person detector and

two classifiers for face and action, see Chapter 2.2.3 for details) [10] through

cloud o�oading. Compute workload fluctuates depending on scene complex-

ity (i.e., number of objects in the scene). Network bandwidth fluctuates due

to user mobility and wireless channel status [11–13]. Available GPU utiliza-

tion also fluctuates (independently of bandwidth) due to multi-user resource

contention, causing inference latency slowdown [14]. The two factors fluctuate

independently of each other, causing alternating resource bottleneck patterns;

for example, network and compute bottlenecks occur 3 and 2 times each in a

non-overlapping and switching pattern within a 30 seconds window.

Challenge #3: Multi-task resource contention (Chapter 2.2.4). Run-

ning multiple DNNs and rendering tasks concurrently incurs resource contention

and degrades performance. This is especially severe on resource-constrained

mobile devices (especially mobile GPUs). For example, running 4 DNN tasks

(object detection, segmentation, hand tracking, and image style transfer) and

1080p@30 fps video frame rendering tasks concurrently in Mixed Reality shop-

ping scenario increases the inference latency from 59.93±3.68 to 1181±668, and

drops the rendering frame rate to as low as 11.99 fps.

1.2 Proposed Edge-Cloud Cooperative Platform

1.2.1 Design Goals

Specifically, our platform aims to achieve the following design goals:

• High throughput and low latency. We aim at end-to-end scheduling

across the end users and analysis server for real-time video processing (e.g.,

30 fps throughput) while satisfying the app-specified accuracy requirements.

We also aim at soft real-time latency (e.g., <100 ms) so that the analysis

3

result is delivered to users promptly for further actions (e.g., bounding box

displayed on screen for o�cers to confirm with his own eyes).

• Robustness under dynamic resource and workload. We also aim at ro-

bust throughput, latency, and accuracy performance under dynamic resource

availability and workload fluctuation. We aim at achieving the goal with end-

to-end optimization across the edge device, network, and edge/cloud server,

as well as cross-layer optimization across the application, framework, and

the OS stack.

• High scalability and generality. Finally, our goal is to develop a platform

that is highly scalable and generalizable across various input video sources,

analysis tasks, and number of users.

1.2.2 Platform Architecture

Figure 1.2 shows the architecture of our edge-cloud cooperative platform. Given

the input source video stream (e.g., camera, LiDAR) and the app specification

(video analytics pipeline, app Service Level Objectives (SLOs), and DNN mod-

els for each analysis task), the platform cooperatively utilizes the mobile/edge

device and the edge/cloud server to run the workload. We currently target

edge devices embedded with accelerators capable of running the DNN infer-

ences (e.g., Google Pixel 4 smartphone with Qualcomm Adreno 640 GPU and

Google Tensor TPU, Magic Leap One AR glasses with NVIDIA Jetson TX2

Pascal GPU, or Oculus Quest VR headset with Adreno 540 GPU). However,

our platform can also be deployed on devices without on-device accelerators

(e.g., CCTVs, microcontrollers) for cloud o�oading-based video analytics.

Specific operation of the platform is as follows. First, Content-Aware Load

Distributor (i) analyzes the input content and determines the analysis DNNs

based on its di�culty, and (ii) distributes the workload across the edge device

4

Figure 1.2: Edge-cloud cooperative platform architecture.

and cloud depending on resource availability. For the workload scheduled for

o�oading, the Task-Aware Video Encoder e�ciently compresses the video with

minimal task accuracy drop. The network (video streaming) and compute (DNN

inference) stages of the o�oading pipeline is scheduled jointly by the QoS-Aware

RB Scheduler and the Multi-User Joint Scheduler, which jointly controls the

video encoding bitrate and the inference DNN complexity depending on the

network/compute resource availability and input scene content profiled by the

QoS-Aware Content Profiler. Finally, the Multi-Task Dynamic Scheduler uti-

lizes multiple mobile processors (e.g., CPU, GPU, NPU) to schedule the exe-

cutions of multi-DNN and rendering tasks distributed for on-device inference.

1.2.3 Key Solutions

Table 1.1 summarizes our platform’s key features and solutions to tackle the

aforementioned challenges.

• Content-aware adaptation and cooperative execution. We design Ea-

gleEye, which incorporates a novel content-aware adaptation and cooperative

inference approach to execute the multi-DNN face identification pipeline over

5

Table 1.1: Challenges and our proposed solutions.

Challenges Solutions

#1: Large data size and compute
#1: Content-aware adaptation and cooperative execution
(Chapter 4 - EagleEye)

#2: Alternating resource bottlenecks
#2: Network-compute joint scheduling
(Chapter 5 - Pendulum)

#3: Multi-task resource contention
#3: App-aware concurrency support on mobile GPUs
(Chapter 6 - Heimdall)

high-resolution video in low latency.

• Network-compute joint scheduling. We design Pendulum, which iden-

tifies a novel tradeo� relationship between network (video streaming) and

compute (DNN inference) stages in the cloud o�oading pipeline and lever-

ages the joint scheduling opportunity to guarantee robust performance under

alternating resource bottlenecks.

• App-aware multi-DNN/rendering concurrency support. We design

Heimdall, which utilizes app-aware (e.g., DNN model architecture and la-

tency SLO) task partitioning and supports fine-grained scheduling of concur-

rent multi-DNN and rendering tasks to minimize resource contention achieve

high latency SLO satisfaction rate on resource-limited mobile devices, espe-

cially on mobile GPUs.

1.3 Contributions

This dissertation thoroughly characterizes the concurrent multi-DNN and ren-

dering workload of emerging live video analytics apps (e.g., Mixed Reality) and

their requirements. Based on it, we design an edge-cloud cooperative platform

to support the workload. While there have been several systems for live video

analytics (e.g., on-device AI systems, adaptive bitrate streaming systems, and

6

cloud ML inference serving systems as analyzed in Chapter 3), they have been

mostly limited to single-stage optimization. Our work is clearly distinguished

in that we perform a comprehensive, end-to-end optimization across the edge,

network, and cloud for high throughput, low latency, and high accuracy. We im-

plement our platform using commercial devices (smartphones and edge servers),

and conduct extensive real-world evaluation to validate their e�ectiveness (e.g.,

up to 9.07◊ per-frame latency reduction, 30 fps throughput with 0.64 higher

accuracy (mIoU), and up to 15◊ worst-case inference latency reduction).

1.4 Dissertation Overview

The rest of the dissertation is organized as follows. We characterize the work-

loads of future live video analytics applications, and analyze challenges in sup-

porting the workload in Chapter 2. We then summarize prior works and their

limitations in Chapter 3. Chapters 4–6 details our systems to realize our pro-

posed edge-cloud cooperative platform. Finally, Chapter 7 summarizes discus-

sion and future works.

7

Chapter 2

Motivational Studies

Our dissertation mainly focuses on MR as representative apps. We first con-

duct motivational studies to characterize the workloads of futuristic MR apps

(Chapter 2.1.1), and analyze the core challenges in supporting the workload

(Chapter 2.2).

2.1 Applications and Requirements

2.1.1 Application Scenarios

Criminal chasing (Figure 1.1(a)). A police o�cer chasing a criminal in a

crowded space (e.g., shopping mall) sweeps the mobile device to take a video of

the area from distance. The mobile device processes the video stream to detect

faces and find the matching one with the criminal. Specifically, it continuously

runs face detection per scene and face recognition per each detected face. Detec-

tion results are seamlessly overlayed on top of the camera frames and rendered

on screen to narrow down a specific area to search.

Immersive online shopping (Figure 1.1(b)). An online shopper wearing

MR glasses positions a virtual couch in his room to see if the couch matches

well before buying it. The MR glasses analyze the room by detecting its layout

8

and furniture, and renders the couch in a suitable position. The user can also

change the style of the couch (e.g., color, texture), as well as adjust the arrange-

ment with his hand movements. This app requires i) running object detection

and image segmentation simultaneously to analyze the room, ii) running hand

tracking and image style transfer to recognize user’s hand movements and ad-

just the style of the couch, and iii) rendering the virtual couch on the right spot

seamlessly.

Augmented interactive workspace (Figure 1.1(c)). A student wearing

MR glasses creates an interactive workspace by combining the physical text-

books and virtual documents. When he encounters a concept he does not un-

derstand, he commands the MR glasses to search for related documents on the

web via hand gestures. The searched documents are augmented near the text-

books. Also, the note he makes on the textbooks is recognized and saved as a

digital file in his device for future edits. This app runs hand tracking and text

detection, while seamlessly rendering the virtual documents.

Other multi-DNN MR apps include MR emoji [15] (face detection + seg-

mentation + style transfer) or surroundings monitoring for visual support [16]

(object and face detection + pose estimation).

2.1.2 Workload Characterization

Real-time, concurrent multi-DNN execution. The core of MR apps is ac-

curately analyzing the physical world and user behavior to combine the virtual

contents, which requires running multiple DNNs concurrently (see Tables 2.1

and 2.2 for examples). Also, such analysis needs to be continuously performed

over a stream of images to seamlessly generate and overlay the virtual contents,

especially in fast-changing scenes (e.g., criminal chasing). Moreover, DNNs need

to run over high-resolution inputs for accurate analysis (e.g., recognizing small

hand-writings or distant faces requires over 720p or 1080p frames [7,17]). These

9

Table 2.1: DNN and rendering requirements for the example MR app scenarios.

Criminal chasing
Immersive online

shopping
Augmented interactive

workspace MR emoji

Continuously
executed

DNNs (fps)

- Face detection [2]
- Face recognition [21]

(< 1s per scene)

- Image segmentation [22]
(1-5 fps)

- Object detection [23]
(1-5 fps)

- Hand tracking [24]
(1-10 fps)

- Text detection [17]
(1-5 fps)

- Hand tracking [24]
(1-10 fps)

- Face detection [2]
(1-10 fps)

- Image segmentation [22]
(1-10 fps)

Event-driven DNNs
(response time)

- Image style transfer [25]
(< 0.1s)

- Image style transfer [25]
(< 0.1s)

Rendering
(resolution, fps)

- Camera frames
(1080p, 30 fps)1

- Bounding boxes - Couch (1440p, 60 fps)2

- Virtual documents
(1440p, 60 fps)2

- Handwriting updates

- Camera frames
(1080p, 30 fps)1

- Emoji/character mask

1,2 Microsoft HoloLens 2 [26] can record 1080p videos at 30 fps, and display 1440p resolution at 60 Hz at maximum.

characteristics are clearly distinguished from prior works [16, 18–20] that have

mostly considered running a single DNN over simple scenes with a few main

objects that can be analyzed with smaller resolution (e.g., 300◊300).

Seamless rendering on top of concurrent DNN execution. MR apps

need to seamlessly augment the virtual contents over the analyzed scenes for

immersive user experiences. Such foreground rendering should be continuously

performed in real-time in presence of the multi-DNN execution, causing serious

contention on resource-constrained mobile GPUs.

Summary. Concurrent execution of multi-DNN and rendering necessitates a

platform to prioritize and coordinate their execution on the mobile GPU. Care-

ful coordination will become more important if an app requires audio tasks

(e.g., voice command recognition, spatial audio generation) along with the vi-

sion tasks, or higher frame rate for more immersive user experience.

2.2 Challenges

2.2.1 Complexity of the State-of-the-art DNNs

One might think that multi-DNN execution on mobile devices is becoming less

challenging due to the emergence of lightweight model architectures (e.g., Mo-

10

Table 2.2: DNNs for the above MR apps. Inference time is measured on MACE

over LG V50 (Adreno 640 GPU).

Task Model Input size
CPU/GPU

ops
Inference

time

Object
detection YOLO-v2 [23] 416◊416◊3 0/33 95 ms

Face
detection RetinaFace [2] 1,920◊1,080◊3 6/129 230 ms

Face
recognition ArcFace [21] 112◊112◊3 0/106 149 ms

Image
segmentation DeepLab-v3 [22] 513◊513◊3 0/101 207 ms

Image style
transfer StyleTransfer [25] 640◊480◊3 14/106 60 ms

Pose
estimation CPM [27] 192◊192◊3 0/187 14 ms

Hand
tracking PoseNet [24] 192◊192◊3 0/74 256 ms

Text
detection EAST [17] 384◊384◊3 8/117 214 ms

bileNet [28,30]) and the increasing computing power of mobile GPUs. However,

the challenge still exists. The main reason is that state-of-the-art DNNs do not

employ the lightweight models directly, but enhance them with complex task-

specific architectures to achieve higher accuracy.

Table 2.3 compares the complexity of state-of-the-art DNNs with their back-

bones in terms of floating-point operations (FLOPs) required for a single infer-

ence. The reported values are either from the original paper if available, or pro-

filed with TensorFlow.Profiler.Profile() function. Overall, state-of-the-art DNNs

require 5.76-10.75◊ FLOPs than their backbones, showing that the lightweight

backbone is only a small part of the whole model. For instance, RetinaFace [2]

detector employs feature pyramid [31] on top of MobileNet-v1 [28] to accurately

detect tiny faces, whereas ArcFace [21] recognizer adds batch normalization lay-

ers on ResNet [29] and replaces 1◊1 kernel to 3◊3 for higher accuracy. Similar

holds for DeepLab-v3 [22] (segmentation model), which adds multiple branches

11

Table 2.3: Complexity comparison between state-of-the-art DNNs and back-

bones.

State-of-the-art DNN Backbone (input size scaled)

Input size Model FLOPs Model FLOPs

1,920◊1,080 RetinaFace [2] 9.54 G MobileNet-v1-0.25 [28] 1.65 G

112◊112 ArcFace [21] 10.13 G ResNet [29] 0.95 G

513◊513 DeepLab-v3 [22] 16.48 G MobileNet-v2 [30] 1.54 G

 1

 3

 5

 7

 9

On-Device LTE 5G 802.11n
(2.4�GHz)

802.11ac
(5�GHz)

L
a

te
n

c
y

 (
s

)

(a) O�oading latency over various networks. (b) Latency and accuracy of raw and

JPEG-compressed frames.

Figure 2.1: O�oading latency of multi-DNN face identification pipeline.

to the backbone MobileNet-v2 [30] to analyze the input image in various scales.

2.2.2 Large Data Size and Compute of Each Analysis Task

Each analysis task execution requires multiple DNN inferences over high-resolution

videos. Running the multi-DNN workload in low-latency is both challenging for

on-device execution and cloud o�oading. Figure 2.1(a) compares the end-to-end

latency on-device and o�oading latency for multi-DNN face identification on

1080p frame (criminal chasing scenario). We use LG V50 (Qualcomm Adreno

640 GPU) and TensorFlow-Lite for on-device inference, and a desktop server

with RTX 2080 Ti GPU. We use di�erent wireless networks: outdoor LTE (11

Mbps) and 5G (45 Mbps), indoor 802.11n (92 Mbps) and 802.11ac (292 Mbps).

12

First, on-device inference takes 8.6s to process a frame average 17 faces, mainly

due to large number of DNN inferences. The o�oading latency also remains

above 0.3 s even for 802.11ac network, and increases to as high 3.4s in outdoor

LTE, mainly due to the large data size (i.e., 6 MB 1080p image) to be transferred

over the network. While one may think that utilizing image compression (e.g.,

JPEG) can reduce the network transmission latency, it comes at the cost of

DNN accuracy drop as shown in Figure 2.1(b), as such compression algorithms

are mainly designed to minimize the impact on human cognition [32].

2.2.3 Alternating Resource Bottleneck from Dynamic Resource

Availability and Workload

Network bottleneck occurs when the available bandwidth is less than the video

encoding bitrate. Compute bottleneck occurs when the DNN inference workload

cannot run in real-time on the available GPUs. We observe that the bottleneck

events frequently alternate across network and compute stages over time.

Study setup. We study the problem using a person analysis workload [10]

in Figure 5.1, composed of YOLOv8-m [33] person detection and two ResNet-

50 [29]-based face and action classifiers. Total inference latency per frame is

proportional to the number of people in the scene, denoted as

Ttotal = Tdetect + Nobject · Tanalysis, (2.1)

where Tdetect and Tanalysis are detection and analysis latency per each of Nobject

objects in a frame, respectively. We use MOT17-11 [34] video, with 720p@30fps,

8 Mbps encoding bitrate and LTE bandwidth trace [3]. We assume the user is

allocated with 1 RTX A4500 GPU, which can process the 30fps video in real-

time for up to 12 objects per frame.

Results. Figure 2.2(a) and (b) indicate the occurrences of the network and

compute bottlenecks in red, respectively, for a 30s analysis window. Overall,

there are 5 non-overlapping bottleneck events, composed of 3 and 2 network

13

(a) Network bottleneck

(bitrate vs. bandwidth)

(b) Compute bottleneck

(latency vs. GPU

capacity)

Figure 2.2: Example bottleneck (colored in red)

timelines.

Figure 2.3: Bitrate and work-

load (# of objects) for di�er-

ent scenes.

and compute bottlenecks, respectively, switching over time.

5.2.1.1 Why Do Bottlenecks Alternate?

We analyze that resource bottleneck alternates due to the independent fluctu-

ation of the following factors.

Encoding bitrate and workload. Video content is highly dynamic across

time and location, altering the network and compute stage resource usages

(encoding bitrate and inference latency) with low correlation. Specifically, for

fixed encoding parameters, the encoding bitrate of a video becomes higher for

fast-changing scene content. However, this is loosely coupled with the DNN

workload a�ected by the number of people in the scene. Figure 2.3 shows an

example for di�erent video segments from MOT [34] and self-collected YouTube

videos (each dot corresponds to 1s video chunk). When a car is driving fast on

a sparse highway, the dashcam video will yield a high bitrate and low inference

workload (blue dots), potentially causing a network bottleneck. However, when

it enters a crowded city road and moves slower, the trend will be the opposite

(green dots), potentially causing a compute bottleneck.

Resource availability. Furthermore, network bandwidth fluctuates due to

14

wireless channel fluctuation (e.g., due to mobility) [11, 12] and multi-user con-

tention, independent of bitrate and workload. For example, 3GPP TS 38.306 [35]

models 5G uplink throughput for highest MCS as 107 Mbps (sub-6G 100 MHz

band, TDD with 5DDDSU format [36], numerology 1, single MIMO layer).

With 10 contending users, each user experiences ¥10 Mbps bandwidth, which

may also drop due to channel fluctuation. Available GPU utilization ratio also

fluctuates depending on other users’ workload.

2.2.4 Multi-Task Resource Contention

Furthermore, running multiple DNNs and rendering tasks concurrently incurs

severe resource contention, degrading performance. While this is especially se-

rious for resource-constrained mobile devices (e.g., mobile GPUs), supporting

concurrency for multi-DNN and redering task execution is challenging due to

the lack of framework and architecture support.

2.2.2.1 Multi-DNN GPU Contention

Existing mobile deep learning frameworks [18,20,37,38] are mostly designed to

run only a single DNN. The only way to run multiple DNNs concurrently is to

launch multiple inference engine instances (e.g., TF-Lite’s Interpreter, MACE’s

MaceEngine) on separate threads. However, multiple DNNs competing over lim-

ited mobile GPU resources incur severe contention, unexpectedly degrading the

overall latency. More importantly, uncoordinated execution of multiple DNNs

makes it di�cult to guarantee performance for mission-critical tasks with strin-

gent latency constraints.

To evaluate the impact of multi-DNN GPU contention on latency, we run 4

DNNs in the immersive online shopping scenario in Table 2.2 on MACE over LG

V50. Figure 2.4(a) shows that with more number of DNNs contending over the

mobile GPU, the inference times increase significantly compared to when only

15

 0
 400
 800

 1200
 1600
 2000

Separate
execution

Concurrent
(2�DNNs)

Concurrent
(3�DNNs)

Concurrent
(4�DNNs)In

fe
re

n
c
e
 t

im
e
 (

m
s
)

StyleTransfer
YOLO-v2

DeepLab-v3
PoseNet

(a) MACE over LG V50 (immersive online

shopping scenario).

 0

 200

 400

 600

Separate
execution

Concurrent
executionIn

fe
re

n
c
e
 t

im
e
 (

m
s
)

RetinaFace(270p)
FSRNet

ArcFace

(b) TF-Lite over Google Pixel 3 XL (criminal

chasing scenario).

Figure 2.4: Multi-DNN GPU contention.

a single DNN is running (denoted as Separate execution). More importantly,

note that the individual DNN inference times are su�cient to satisfy the app re-

quirements (i.e., the sum of the inference times of 4 the DNNs are 560.02 ms, in-

dicating that they can run at ¥2 fps when coordinated perfectly). However, the

uncoordinated execution makes the performance of individual DNNs highly un-

stable (e.g., the latency of StyleTransfer increases from 59.93±3.68 to 1181±668

ms when 4 DNNs run concurrently), making it challenging to satisfy the latency

requirement. We observe a similar trend in TF-Lite: Figure 2.4(b) shows that

running 3 DNNs in the person identification pipeline developed in [7] incurs

significant latency overhead. We further analyze the cause of the contention in

Chapter 6.2.

2.2.2.2 Rendering-DNN GPU Contention

More importantly, existing frameworks only consider a single DNN running in

an isolated environment (i.e., no other task contending over the mobile GPU),

and are ill-suited for MR apps that require concurrent execution of rendering in

presence of multiple DNNs. Figure 2.5 shows the 1080p camera frame rendering

rate in presence of multiple DNNs, with the same DNN setting as in Figure 2.4.

Figure 2.5(a) shows that when multiple DNNs are running, rendering frame

rate drops significantly due to the similar contention between multiple DNNs

16

 0

 10

 20

 30

F
ra

m
e
 R

a
te

 (
fp

s
) Camera only

1 DNN
2 DNNs

3 DNNs
4 DNNs

(a) Average frame rate.

 0
 5

 10
 15
 20
 25
 30

 0 2 4 6 8 10

F
ra

m
e
 r

a
te

 (
fp

s
)

Time (s)

Camera only
2 DNNs

3 DNNs
4 DNNs

(b) Frame rate over time.

Figure 2.5: Rendering-DNN GPU contention on MACE over LG V50 (immersive

online shopping scenario).

 0

 10

 20

 30

F
ra

m
e
 R

a
te

 (
fp

s
) Camera only

TinyFace(360p)
TinyFace(1080p)
TinyFace(1080p)+ArcFace

(a) Average frame rate.

 0
 5

 10
 15
 20
 25
 30

 0 2 4 6 8 10

F
ra

m
e
 r

a
te

 (
fp

s
)

Time (s)

TinyFace(720p)
Average frame rate

(b) Frame rate over time.

Figure 2.6: Rendering-DNN GPU contention on TF-Lite over Google Pixel 3

XL (criminal chasing scenario).

becoming as low as 11.99 fps when all 4 DNNs are running. To make matters

worse, GPU contention incurs frame rate heavily fluctuating over time as shown

in Figure 2.5(b), significantly degrading perceived rendering quality to users.

We observe a similar trend on TF-Lite when running TinyFace [39] detector

and ArcFace [21] recognizer concurrently with the rendering task (Figure 2.6).

17

Chapter 3

Related Work

3.1 Live Video Analytics Applications

Live video analytics enables various useful apps including tra�c monitoring [40],

and AR/MR [1,7, 8]. Gabriel [41] uses cloudlets for cognitive assistance. Over-

Lay [42] and MARVEL [43] utilize cloud for location-based mobile AR services.

A large body of work aimed to improve the practicality of video analytics sys-

tems, including adaptation [40], model merging [44], privacy protection [45],

and continual learning [46, 47]. In line with recent works, we characterize the

workloads of futuristic live video analytics apps and design an edge-cloud co-

operative platform to support the workload.

3.2 On-Device Systems

3.2.1 Mobile Deep Learning Frameworks

Although several frameworks have been developed from both industry [37, 38,

48,49] and academia [18–20,50–55], they have been mostly focused on running

a single DNN in an isolated environment (i.e., no other task contending over

GPU). Few studies aimed at running multiple DNNs, but are limited to be

18

applied for concurrent multi-DNN and rendering workload. DeepEye [16] and

NestDNN [56] mainly focuses on memory optimization. DeepEye [16] paral-

lelizes fully connected layer parameter loading and convolutional layer compu-

tation but runs only a single DNN on GPU at each time. NestDNN [56] dynam-

ically adapts model size considering available resources but does not consider

the coordination of multi-DNN inferences. Lee et al. [57] and Mainstream [58]

focus on sharing weights and computations between multiple DNNs.

3.2.2 On-Device Continuous Mobile Vision

Several studies have tackled the challenge of on-device deep learning by model

compression [19,51], inference speed acceleration [18,20,50,54], and model size

adaptation [52, 53]. However, existing systems mostly focused on running a

single DNN on downsampled images (e.g., 300◊300) to analyze one or a small

number of large, primary object(s) in vicinity.

For multi-task concurrency support, several studies aimed at enabling ef-

ficient GPU sharing on desktop/server GPUs, either by multiplexing multiple

kernels temporally [59–61] or spatially [62–67]. Such techniques have been also

applied for multi-DNN workloads [68–71]. However, they are ill-suited for mo-

bile GPUs due to limited architecture support and memory bandwidth (see

Chapter 6.3.1 for analysis).

3.3 Cloud O�oading Systems

3.3.1 O�oading for Continuous Mobile Vision

MCDNN [72] and DeepDecision [73] dynamically execute DNN on cloud or mo-

bile based on available resources. VisualPrint [74] o�oads extracted features

rather than raw images to save bandwidth. Glimpse [75] tracks objects by of-

floading only trigger frames for detection and tracking them in the mobile. Liu

19

et al. [76] pipeline network transmission and DNN inference to optimize latency.

However, existing systems process the input image as a whole, either on mobile

or cloud at a given time; such approaches can result in significant latency in

case of running complex multi-DNN pipeline.

3.3.2 Adaptive Bitrate for Live Video Analytics

A large body of works has designed adaptive bitrate techniques for live video

analytics by controlling resolution [77], frame rate (frame filtering) [75, 78–84],

quantization [1], and a combination of all [85]. Other works have designed RoI

filtering and streaming systems [86, 87] and super-resolution-enhanced stream-

ing pipelines [88–90]. Quantization table optimization for DNNs [32, 91] has

also been studied. However, they are designed for network-only scheduling and

cannot scale to alternating resource bottleneck scenarios.

3.3.3 ML Serving in Edge/Cloud Server

Several works aimed at high-throughput inference serving on edge/cloud servers,

with content-aware adaptation [40, 92], priority-aware scheduling [5, 56, 93],

caching [94–98], or multi-edge workload balancing [10]. However, they are mostly

compute-only scheduling (assume that videos arrive at the cloud without delay),

lacking scalability in network bottlenecks. For example, VideoStorm [5] allocates

CPU cores across users considering resource-quality tradeo�s (profiled o�ine),

but cannot leverage additional network resources in compute bottleneck.

3.3.4 Edge-Cloud cooperative Inference Systems

Several systems e�ciently split the DNN inference workload across mobile/edge

and cloud [14,99–101]. However, they mostly focus on image processing and lack

consideration for videos (e.g., how to e�ciently compress the intermediate in-

ference features of consecutive frames). Furthermore, they mostly assume single

20

task scenarios and lack consideration for multi-DNN and rendering concurrency

support.

3.4 Tiny ML/E�cient Deep Learning

A large body of works aimed at DNN compression for resource-e�cient deep

learning in mobile/edge devices. They have leveraged various techniques in-

cluding lightweight model architecture design [28, 33], weight pruning [102],

quantization [103], combination of both [104,105], hardware-aware model adap-

tation [106], and neural architecture search [107, 108]. Such optimization tech-

niques can also be leveraged in our platform for resource-e�ciency.

21

Chapter 4

EagleEye: AR-based Person Identification in

Crowded Urban Spaces

4.1 Introduction

In this Chapter, we design EagleEye, a system for content-aware adaptation

and edge-cloud collaborative execution in live video analytics. We take the AR

person finding application as the representative multi-DNN live video analytics

workload. Imagine a parent looking for her/his missing child in a highly crowded

square. In many cases, a swarm of people in front of her/his eyes will quickly

overload cognitive abilities; our motivational study shows that it takes ¥16

seconds to locate a person in a crowded scene (See Chapter 4.3 for details).

An Augmented Reality (AR)-based service with smart glasses or a smartphone

will be extremely helpful if it can capture the large crowd from distance and

pinpoint the missing child in real-time (Figure 4.1). Despite recent advances in

person identification techniques using various features such as face [21,109,110],

gait [111, 112] or sound [113, 114], fast and accurate person identification in

crowded urban spaces remains a highly challenging problem.

22

Figure 4.1: Example usage scenario of EagleEye: parent finding a missing child.

More examples in Chapter 4.2.

EagleEye is a AR-based system to identify missing person(s) in large, crowded

urban spaces. It continuously captures the image stream of the place using com-

modity mobile cameras, identifies person(s) of interests, and shows where the

target is in the scene in (soft) real-time. EagleEye not only shows a good ex-

ample of future AR applications based on real-time analysis of complex scenes,

but also characterizes the workload of future multi-DNN mobile deep learning

systems.

Designing EagleEye involves critical technical challenges for both identifica-

tion accuracy and latency.

• Recognition accuracy. Compared to prior systems [115–117] that aim

at identifying 1 or 2 faces in close vicinity (e.g., engaged in a conversation),

the key challenge in building EagleEye is accurately detecting and recognizing

distant small faces. In crowded spaces, individual faces often appear very small,

with facial details blurred out. Recent Deep Neural Network (DNN)-based face

recognition has shown remarkable progress in accurately identifying faces under

various unconstrained settings [21,118,119] (e.g., variations in pose, occlusion,

or illumination). However, the state-of-the-art techniques still fail to provide ro-

bust performance for Low-Resolution (LR) faces. Our study shows that Equal

Error Rate, the value in the ROC curve where false acceptance and false rejec-

23

Figure 4.2: Multi-DNN face identification pipeline.

tion rates are identical, of the state-of-the-art DNN [21] grows from 9% to 27%

when resolution drops from 112◊112 to 14◊14 (Chapter 4.3).

• Identification latency. More importantly, it is challenging to analyze a

crowded scene in (soft) real-time to allow users to sweep large spaces quickly.

EagleEye imposes unique challenges compared to recent DNN-based continu-

ous mobile vision systems [16,18–20,72,73,76]. Firstly, as shown in Figure 4.2,

EagleEye requires running a series of complex DNNs multiple times for a sin-

gle scene: face detection network once over a scene, our resolution enhancing

network (introduced in Chapter 4.5.2) and face recognition network per each

face. This is very di�erent from prior systems that run a single DNN only once

over a scene. Secondly, each DNN is highly complex to achieve high accuracy,

incurring significant latency. Face detectors employ feature pyramid [31] which

upsamples features in latter layers and adds up to earlier layers to detect small

faces. Also, state-of-the-art recognizers are heavy ResNet-based. Finally, prior

work mostly downsample the input frames (e.g., 300◊300 [120]) to reduce com-

plexity (this was possible as they analyze a small number of large, primary

objects in vicinity). However, EagleEye should run the identification pipeline on

high-resolution frames to detect a large number of distant faces that appear

very small.

24

It is highly challenging to run a complex multi-DNN pipeline over high-

resolution images in real-time. It is not even trivial to simply port state-of-

the-art DNNs to mobile deep learning frameworks (e.g., TensorFlow-Lite) due

to the limited number of supported operations. The challenge aggravates con-

sidering the execution latency. For instance, a lightweight MobileNet [28] can

only process two 1080p frames per second on high-end mobile GPU (Table 4.1).

Naive execution of EagleEye’s entire pipeline takes 14 seconds for a scene with

30 faces (Figure 4.5). We can consider multithreading or o�oading, but they are

not also straightforward to apply. Multithreading degrades performance due to

resource contention over limited mobile resources (e.g. GPU, CPU, memory).

Also, 3G/LTE network with low bandwidth is likely the only wireless network

available in crowded outdoor environments, making o�oading non-trivial.

To tackle the challenges, we design and develop a suite of novel techniques

and adopt them in EagleEye.

• Identity clarification network. We first design a novel end-to-end face

identification pipeline to identify small faces accurately. Our key idea is to add

Identity-Clarification Network (ICN) on conventional 2-step pipeline (detection-

recognition) to recover missing facial details in LR faces, thus resulting in a 3-

step pipeline (detection-clarification-recognition as shown in Figure 4.2).1 ICN

adopts a state-of-the-art image super-resolution network as the baseline and

innovates it with specialized training loss functions to enhance LR faces for

accurate recognition; note that prior super-resolution networks focus on gener-

ating perceptually natural images and fail to preserve identities, making them

ill-suited for recognition [121] (see Chapter 4.5). Also, ICN enables identity-

preserving reconstruction using reference images (probes) of the target, com-
1Instead of adding ICN to the conventional 2-step pipeline, integrating a resolution up-

sampler in the feature encoder of a face recognition model and training it on low-resolution

faces is also feasible. However, training and running the new model would still incur similar

accuracy/latency challenges.

25

monly available in our scenarios (e.g., photos of children provided by parents).

We observe that the complexity of LR face recognition results from accepting

positive identities rather than denying negative identities (see Chapter 4.5.2

for details). Thus, biasing ICN on the target improves LR face recognition ac-

curacy with only a small increase in false positives. Overall, our ICN-enabled

pipeline improves true positives by 78% with 14% false positives, against the

2-step identification pipeline.

• Multi-DNN execution pipeline. Our workload (i.e., running a series

of DNNs multiple times on high-resolution images) requires a di�erentiated

strategy to optimize the heavy computation. We develop a runtime system with

Content-Adaptive Parallel Execution to run a multi-DNN face identification

pipeline at low latency. The key idea behind this approach is to divide the

high-resolution image into multiple sub-regions and selectively enable di�erent

components in the pipeline, depending on the content. For instance, ICN is

only applied to a region with LR faces while the entire pipeline is not executed

for a background region with no faces. Furthermore, we exploit the spatial

independence of face recognition workload (i.e., identifying faces in di�erent

sub-regions does not have dependency) to parallelize and pipeline the execution

on heterogeneous processors on the mobile and cloud. Overall, our technique

accelerates the latency by 9.07◊ with only 108 KBytes of data o�oaded.

Our major contributions are summarized as follows:

• To the best of our knowledge, this is the first end-to-end mobile system that

provides accurate and low-latency person identification in crowded urban

spaces.

• We design a novel face identification pipeline capable of accurately iden-

tifying small faces in crowded spaces. By employing Identity Clarification

Network to recover facial details of LR faces, we enhance true positives by

78% with 14% false positives.

26

• We design a runtime system to handle the unique workload of EagleEye (i.e.,

processing high-resolution images with multiple DNNs for complex scene

analysis). We believe this will be an unexplored common workload for many

mobile/wearable-based continuous vision applications. We utilize a suite of

techniques to minimize the end-to-end latency to as low as 946 ms (9.07◊

faster than naive execution).

• We conduct extensive controlled and in-the-wild study (with real implemen-

tations and various datasets), validating the e�ectiveness of our proposed

system.

4.2 Motivating Scenarios

Finding a missing child. In crowded squares or amusement parks, there

are many cases where a parent loses track of her/his child. In such incidents,

it is di�cult to find the missing child with naked eyes since she/he becomes

cognitively overloaded to identify many people in vicinity. EagleEye can help

the parent: by sweeping the mobile device to capture the space from distance,

it can help quickly pinpoint possible faces and narrow down a specific area to

search, so that the parent can find the child before the child moves to a di�erent

place. Similarly, police o�cers can use EagleEye to chase criminals in crowded

malls, streets, squares, etc.

Children counting in field trips. Teachers in kindergarten regularly take

children out for field trips to catch educationally-depicting behaviors hardly

captured in classroom settings. However, in reality, teachers spend most of

the time counting children to make sure they are in place. EagleEye can be of

extensive use to reduce the cognitive burden for the teachers so that they can

focus on the original goal.

Social services for familiar strangers. EagleEye can be used to build an

27

interesting social service to connect people. For example, it can be used to

identify familiar strangers (people whom we met in the past but do not remem-

ber the details) to help with interaction; a person attending a social event can

use EagleEye to identify them and get an early heads-up before they are in close

proximity to avoid embarrassing moments.

4.3 Preliminary Studies

To motivate EagleEye, we first conduct a few studies to verify (1) how quickly

humans can identify face(s) in crowded urban spaces and (2) whether it is

feasible in terms of accuracy and speed to employ DNN-based face recognition

algorithms to aid the humans’ cognitive abilities.

4.3.1 How Fast Can Humans Identify Faces?

Prior studies report that it takes for humans about 700 ms to detect a face

in a scene [122], and about 1 second to recognize the identity of a single face

image [123]. We extend the experiments to study how long it takes to identify

target(s) in crowded scenes. We first recruit 6 college students (5 males and 1

female, age 24-28) as subjects for dataset collection, and take videos of them

blending inside the crowd in various urban spaces including college campus,

downtown streets, and subway stations. Next, we recruit 11 students (10 males

and 1 female, age 24-32) who are of mutual acquaintances with the subjects

(denoted as Familiar), and 14 other students (12 males and 2 females, age

20-26) who have never seen the subjects before (denoted as Unfamiliar).

In the experiments, the participants are seated in front of the screen with

a similar setup as in [122]. Each participant is first shown faces of 1 to 3 tar-

get identities. Afterwards, a scene image (1080p resolution) is shown, in which

target(s) may or may not exist. The participant clicks the location in the scene

28

 0

 5

 10

 15

 20

 25

Familiar Unfamiliar

T
im

e
 (

s
)

Low Medium High

(a) Crowdedness (response

time).

 0

 5

 10

 15

 20

Familiar Unfamiliar

T
im

e
 (

s
)

Present Absent

(b) Presence vs. absence (re-

sponse time).

 0
 5

 10
 15
 20
 25
 30
 35

Familiar Unfamiliar

T
im

e
 (

s
)

1 2 3

(c) Number of targets (re-

sponse time).

 0

 0.2

 0.4

 0.6

 0.8

 1

Familiar Unfamiliar

A
c

c
u

ra
c

y

Low Medium High

(d) Crowdedness (accuracy).

 0

 0.2

 0.4

 0.6

 0.8

 1

Familiar Unfamiliar

A
c

c
u

ra
c

y

Present Absent

(e) Presence vs. absence (ac-

curacy).

 0

 0.2

 0.4

 0.6

 0.8

 1

Familiar Unfamiliar

A
c

c
u

ra
c

y

1 2 3

(f) Number of targets (accu-

racy).

Figure 4.3: Human cognitive abilities on identifying faces in crowded scenes:

response time and accuracy.

where she/he finds each target. Response time is measured as the duration be-

tween when the scene is displayed and when the participant finishes identifying

all targets. The scenes are classified into three levels of crowdedness (examples

are shown in Figure 4.16): i) Low (less than 10 people in close distance with

face sizes at least 30◊30 pixels), ii) High (more than 20 people with face sizes

smaller than 14◊14), and iii) Medium (between Low and High). Each partici-

pant is shown 5 scenes per each category (15 in total) and was asked to be as

precise as possible.

Figure 4.3 shows the response time/accuracy results. Our experimental re-

sults are summarized as follows (unless specified, the reported results are on

High scenes):

• Overall, it takes 6.37 and 15.83 seconds on average to identify familiar and

unfamiliar faces in crowded scenes (standard deviation: 2.02 and 6.87 sec-

onds), respectively, showing noticeable cognitive loads.

• It takes longer to identify unfamiliar faces than familiar ones.

• Not only does it take longer to identify a target in more crowded scenes, but

29

the accuracy also drops (Figures 4.3(a) and (d)).

• Especially for the Familiar group, it takes longer to confirm the absence of

target than presence. (Figures 4.3(b) and (e)). We observe that it is because

when participants fail to locate the target in the scene, they start looking

over again multiple times to confirm their decision.

• It takes longer to identify multiple targets, and accuracy drops as well (Fig-

ures 4.3(c) and (f)).

The above results clearly show the human’s vulnerability to cognitive over-

load. While the study was designed as identifying the target person(s) in a

scene image for controllability of the experiment, we conjecture that the cogni-

tive overload will be greater in real-world settings where the scene does not fit

into a single view.

4.3.2 How Accurate Can DNNs Identify Faces?

Faces in crowded spaces captured from a distance experience high variations in

pose, occlusion, illumination, and resolution, making accurate recognition very

challenging. While prior algorithms have achieved robust performance (e.g.,

over 90% accuracy) for the first three [21, 118, 119], the Low-Resolution (LR)

face recognition problem has not been fully studied yet.

We conduct a study to analyze the di�culty of LR face recognition. We

first train ResNet50 with ArcFace loss [21] on MS1M dataset [124], and test

performance on 50 identities in VGGFace2 [125] testset (50 images per identity).

Figure 4.4 shows that verification (determining whether two faces match or not)

accuracy drops significantly as resolution decreases. Equal Error Rate (EER),

the value in the ROC curve where false acceptance and false rejection rate are

identical, grows as high as 0.27 when the resolution is 14◊14.

For further analysis, we run a small study with 8 identities in VGGFace2 [125]

testset. We train ResNet50 [29] with 2-dimensional output features using SphereFace

30

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
 A

c
c
e
p

t

False Accept

112x112
56x56
28x28
14x14

Figure 4.4: Face verification accuracy.

 0

 3

 6

 9

 12

 15

 0 5 10 15 20 25 30

L
a
te

n
c
y
 (

s
)

Number of faces

Figure 4.5: Latency of face identifica-

tion pipeline.

7

(a) 112◊112.

8

(b) 56◊56.

9

(c) 28◊28.

10

(d) 14◊14.

Figure 4.6: Feature map visualization for varying resolutions (points with same

color represents same identity).

loss [109]. Figure 4.6 visualizes the trained features for varying resolutions,

where the points with the same color represent the same identity. We observe

that when the resolution is high (e.g., 112◊112), features for each identity form

non-overlapping sharp clusters. However, as resolution drops, clusters become

wider and start to overlap with each other, becoming indistinguishable.

31

Table 4.1: Inference time of DNNs with TensorFlow-Lite running on LG V50

(Qualcomm Adreno 640 GPU).

Model

Input size
MobileNetV1 [28]

(Classification)
YOLO-v2 [23]

(Detection)

224◊224 24 ms 357 ms

640◊360 55 ms 1,477 ms

1,280◊720 209 ms 5,009 ms

1,920◊1,080 452 ms 9,367 ms

Table 4.2: Complexity and latency of component DNNs. FLOPs are measured

with tf.profiler.profile() function.

Task Model FLOPs Inference time

Face
detection

RetinaFace [2]
(MobileNetV1-based) 9.54 G

648 ms per
1080p image

Identity
clarification Ours (Chapter 4.5.2) 15.84 G

166 ms per
14◊14 face

Face
recognition

ArcFace [21]
(ResNet50-based) 10.21 G

287 ms per
112◊112 face

4.3.3 How Fast Can DNNs Identify Faces?

Conventional face identification pipelines operate in a 2-step manner (i.e., face

detection on the image and face recognition on each detected face sequentially).

In our scenarios, both steps require significant computation. First, the detec-

tion network should run on a high-resolution frame to detect distant faces that

appear very small. In such settings, providing real-time performance is chal-

lenging; Table 4.1 shows that YOLOv2 [23], one of the fastest networks that

can be used for face detection, takes more than 9 seconds to process a 1080p

frame. Second, recognition latency increases proportionally to the number of

faces, which can be very large in crowded scenes. Figure 4.5 shows that naively

running the state-of-the-art multi-DNN face identification pipeline composed of

32

DNNs summarized in Table 4.22 takes more than 14 seconds to process a scene

with 30 faces even on a high-end LG V50 with Qualcomm Adreno 640 GPU.

4.3.4 Summary

In crowded spaces, humans become cognitively overloaded, clearly necessitating

the need for a system to aid their abilities. However, DNN-based face recognition

algorithms cannot be applied directly as they fail to identify LR faces accurately,

and naive execution incurs significant latency.

4.4 EagleEye: System Overview

4.4.1 Design Considerations

High recognition accuracy. Our primary objective is to design a face identi-

fication pipeline capable of accurately identifying target(s) in crowded spaces,

even when he/she appears very small.

Soft Real-time performance. While enabling an accurate face identifica-

tion pipeline, our goal is to provide soft real-time performance (e.g., 1 fps)

for application usability. We aim to devise techniques to optimize various la-

tency components in the end-to-end system while incurring a minimum loss in

recognition accuracy.

Use of commodity mobile camera. We aim at achieving high accuracy using

frames captured by cameras of commodity smartphones or wearable glasses

(e.g., 1080p frames at 30 fps [127]). If cameras with higher resolution or optical

zoom-in are available, our approach can help cover a more extensive search

area.
2These are the state-of-the-art not only in terms of accuracy but also in terms of complexity.

For face detectors, comparable networks are heavy VGG16 [126] or ResNet101 [39]-based.

Recent face recognizers are based on 64-layered ResNet [109,110].

33

① Background
à Excluded from processing
② Large, frontal faces
à Detection + lightweight recognition
③ Large, profile faces
à Detection + heavy recognition
④ Small faces
à Detection + ICN + heavy recognition

①② ④③

Figure 4.7: Operation of EagleEye in a nutshell.

Minimal use of o�oading. In our common use cases (i.e., a moving user in

crowded outdoor environments), we assume that the availability of edge servers

and Wi-Fi connectivity are limited. For robust performance, we aim to minimize

the amount of data o�oaded to the cloud and run most of the computation on

local.

4.4.2 Operational Flow

Figure 4.7 shows the nutshell operation of EagleEye: given a crowded scene

image, we adaptively process each region with di�erent pipelines depending

on the content. For background regions, we do not run any DNN. For non-

background regions, we run face detection and adaptively select the latter part

of the pipeline to process each detected face based on di�erent variations: i)

large, frontal faces (which are very easy to recognize) are processed with a

lightweight recognition network, ii) large, profile faces (whose resolutions are

su�cient but pose variations make recognition di�cult) are processed with a

heavy recognition network, and iii) small faces are first processed with Iden-

tity Clarification Network) (which enhances resolution of LR faces for accurate

recognition) and then with heavy recognition network. Finally, exploiting the

spatial independence of the task, we process each region and face in parallel on

heterogeneous processors on mobile and cloud.

34

Edge-Based
Background

Filtering

Input
frame

Mobile

Cloud

Render Feature vectors

Identity
Clarification

Verification

Variation-Adaptive
Face Recognition

Face Detection
(on CPU)

Lightweight Face
Recognition

(on GPU)

Heavy Face
Recognition

Spatial
Pipelining

Figure 4.8: EagleEye system overview.

Figure 4.8 shows the operational flow of EagleEye. We employ Content-

Adaptive Parallel Execution to run the complex multi-DNN face identification

pipeline at low latency using heterogeneous processors on mobile and cloud.

Given an input frame, Spatial Pipelining first divides it into spatial blocks,

so that each block can be processed in a pipelined and parallel manner. Af-

terwards, Edge-Based Background Filtering rules out background blocks with

edge intensity lower than a threshold. For the remaining blocks, we detect faces

on the mobile CPU. Each detected face is scheduled to a di�erent pipeline

by Variation-Adaptive Face recognition. Large, frontal faces are processed by

lightweight recognition network running on mobile GPU. The rest is o�oaded to

the cloud, where large, profile faces are processed by heavy recognition network,

and small faces are processed by ICN followed by heavy recognition network.

4.5 Identity Clarification-Enabled Face Identification

Pipeline

We detail our novel 3-step face identification pipeline. It operates as shown in

Figure 4.2: i) detect faces in the scene, ii) enhance each LR face with ICN, and

iii) extract feature vectors for each face with recognition network.

35

LR GAN Ground truth

Figure 4.9: GANs reconstruct realistic faces, but fail to preserve the face iden-

tity.

4.5.1 Face Detection

The first step of our pipeline is face detection. The detection network should

be accurate in detecting small faces, since faces missed in this step would lose

the chance of being identified at all. At the same time, it should be lightweight

so that it can run in (soft) real-time. We experiment various state-of-the-art

DNNs and select RetinaFace detector [2] with MobileNetV1 [28] backbone for

the following reasons: i) it adopts context module which has been proven very

e�ective in detecting small faces [126, 128], and ii) it is the fastest among the

state-of-the-art group due to its lightweight backbone network (others are heavy

VGG16-based [126] or ResNet101-based [39]).

4.5.2 Identity Clarification Network

LR faces lack details crucial for identification. To enhance recognition accuracy,

we design ICN, which enhances the resolution of LR faces using Generative

Adversarial Network (GAN). As conventional GANs reconstruct faces with sig-

nificant distortion from the original identity (Figure 4.9), we adapt GAN to

reconstruct identity-preserving faces by using various loss functions, as well as

a specialized training methodology (Identity-Specific Fine-Tuning).

Network Architecture. Figure 4.10 shows the overview of ICN. For generator

G, we adopt Residual block [29]-based architecture similar to FSRNet [129]

36

LR Reconstructed !"

Face
upsampler

Ground truth "

Discriminator (D) GAN
loss

Face feature
extractor (#)

Face
similarity

loss

Face
landmark
estimator landmark %̂

Pixel
loss

Generator (&)

Figure 4.10: Identity Clarification Network: overview.

Co
nv

+R
eL

U

Re
sB

lo
ck

Re
sB

lo
ck

Co
nv

LR Intermediate HR

Co
nv

+R
eL

U

Co
nv

+R
eL

U

estimated
landmark

…

Co
nv

+R
eL

U

Re
sB

lo
ck

Re
sB

lo
ck

…

Re
sB

lo
ck

Re
sB

lo
ck

…

12 blocks

Co
nv

+R
eL

U

Co
nv

+R
eL

U

Re
sB

lo
ck

Re
sB

lo
ck

…

Co
nv

3 blocks 3 blocks

3 blocks

Figure 4.11: Generator network architecture.

as shown in Figure 4.11, which has shown high reconstruction performance.

Furthermore, we employ anti-aliasing convolutional and pooling layers [130]

to improve robustness to pixel misalignment in face detection and cropping

process. We employ various additional networks and loss functions to train

ICN to preserve identity as follows.

Following the convention in super-resolution [131, 132], the generator is

trained to minimize the pixel-wise L2 loss between the reconstructed face and

the ground truth,

Lpixel = 1
HW

Hÿ

i=1

Wÿ

j=1

1
Îyi,j ≠ ỹi,jÎ2 + Îyi,j ≠ ŷi,jÎ2

2
, (4.1)

where H, W are height and width, ỹ and ŷ are the intermediate and final High-

Resolution (HR) face in Figure 4.11, respectively, and y is the ground truth.

As reconstructing HR faces is very challenging, recent studies have shown

37

that employing a facial landmark estimation network to guide the reconstruc-

tion process yields superior performance [129, 133]. We adopt the approach to

estimate facial landmarks from the intermediate HR face instead of directly

from the LR face. The facial landmark estimation network is trained to mini-

mize the MSE between estimated and ground truth landmarks,

Llandmark = 1
N

Nÿ

n=1

ÿ

i,j

Îzn

i,j ≠ ẑn

i,jÎ2, (4.2)

where ẑn

i,j
is the estimated heatmap of the n-th landmark at pixel (i, j) and z

is the ground truth.

Recent studies have shown that GAN [134] plays an important role in recon-

structing realistic images. We employ WGAN-GP [135] for improved training

stability, whose loss is defined as:

LGAN = ≠D(ŷ) = ≠D (G (x)) , (4.3)

where G(x) denotes the HR face reconstructed by the generator, and D denotes

the discriminator that classifies whether the reconstructed face looks real or not,

which is trained by minimizing the following loss function (refer to the original

paper [135] for details),

LDiscriminator = D(ŷ) ≠ D(y) + ⁄ (ÎÒx̂D (x̂) Î2 ≠ 1)2 . (4.4)

We also enforce the reconstructed face to have similar features with the

ground truth by minimizing the face similarity loss

Lface = 1
d

ÎÂ (y) ≠ Â (ŷ) Î2, (4.5)

where Â(·) denotes d-dimensional feature vector extracted by the VGG16 net-

work trained on ImageNet [136].

Finally, the above loss functions are combined as a weighted sum and min-

imized in the training process,

Ltotal = Lpixel + 50 · Llandmark + 0.1 · LGAN + 0.001 · Lface. (4.6)

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Distance

112x112
56x56
28x28
14x14

(a) Same identity pair.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Distance

112x112
56x56
28x28
14x14

(b) Di�erent identity pair.

Figure 4.12: CDF of face distances for varying resolutions.

Identity-Specific Fine-Tuning. Baseline ICN aims to adapt conventional

GANs to overcome their limitation (i.e., reconstructing perceptually realistic

faces at the cost of significant distortion from the ground truth). However,

we notice that it still often reconstructs faces with distorted identity from the

original. Accordingly, we need another step to employ ICN for our purpose of

accurate recognition.

Before introducing our approach, we further dig deeper into the LR face

recognition problem. Figure 4.12 shows that as resolution decreases, L2 distance

between features of faces with the same identity increases significantly, whereas

those of di�erent identities remain identical. In other words, the di�culty of

LR face recognition comes from the hardship of accepting positive pair of faces,

rather than denying negative pairs. Therefore, LR face recognition accuracy can

be enhanced if we can bring back the features of faces with the same identity

close to each other.

To this end, we develop Identity-Specific Fine-Tuning to re-train ICN with

reference images (probes) of the target, which is commonly available in our

target scenarios (e.g., photos of children provided by parents). Such re-training

process enables ICN to instill the facial details of the target into the input

LR face, thus making it easier to recognize when a LR face of target identity

is captured. While such biasing may also increase false positives caused by

39

LR faces that do not match the target identity pulled towards the probes, we

observe that such cases only occur for ones that are very close to the target

in feature space, thus yielding gain in true positives outweighing false positives

(78% vs. 14% as shown in Chapter 4.8.3).

Probe Requirements. To fine-tune the ICN to instill facial details of the tar-

get, Identity-Specific Fine-Tuning requires probe images with rich facial details.

As an initial study we collect the probes with high-resolution, and leave detailed

analysis of the impact of the composition of probes (e.g., pose or occlusion) as

future work.

Data Augmentation. To diversify the probes as well as boost robustness

to various real-world degradation, we also utilize the following augmentation

techniques:

• Illumination. Change value (V) component in HSV color space.

• Blur. Apply Gaussian blur with varying kernel sizes.

• Noise. Add Gaussian noise with varying variance.

• Flip. Apply horizontal flip.

• Downsampling. Resize with di�erent downsampling kernels. (e.g., bicubic,

nearest neighbor).

Scalability. Finally, the overhead of fine-tuning the baseline ICN pre-trained

on a large-scale face dataset to a specific target identity is not significant (e.g.,

takes about 20 minutes on a single NVIDIA GTX 2080Ti GPU). Thus, we

expect it can be flexibly re-trained at deployment as the target changes.

4.5.3 Face Recognition and Service Provision

At the final stage, state-of-the-art ResNet50-based ArcFace [21] runs on each

face to extract 512-dimensional feature vector, which is compared to that of

the target probes. Those with distance below the threshold are highlighted on

the screen so that the user can take further actions. To compensate for possible

40

motion between the image capture and output rendering (about 1 second as

our evaluation shows), we can employ motion tracking to shift the bounding

boxes using approaches used in prior detection systems [75,76].

4.6 Real-Time Multi-DNN Execution

We detail our runtime system to execute the multi-DNN face identification

pipeline at low latency. We start with workload characterization by identify-

ing the sources of latency, followed by our proposed Content-Adaptive Parallel

Execution.

4.6.1 Workload Characterization

Sequential Execution of Multiple DNNs. Identifying target person(s) in

a crowded scene requires a sequential execution of multiple complex DNNs

(i.e., face detection, identity clarification, and recognition) whose individual

complexities are summarized in Table 4.2.

High-Resolution Input. Conventional object detection networks downsample

the input images to reduce complexity (e.g., 416◊416 [23] or 300◊300 [120]).

However, in our case, the input image size should be retained large (e.g., 1080p),

so that small faces have enough pixels to be detected. As the complexity of DNN

inference grows proportionally to the image size, latency becomes significant

when processing such high-resolution images.

Repetitive Execution for Each Face. ICN and recognition network must

repeatedly run for each face detected by the face detection network. The latency

increases proportionally to the number of faces in the scene, which becomes

significant in crowded spaces.

41

4.6.2 Content-Adaptive Parallel Execution

4.6.2.1 Optimization Strategies

Content-Adaptive Pipeline Selection. We adaptively process each region of

the image with di�erent pipelines depending on the content. This helps optimize

the latency incurred when processing a large number of faces, while maintaining

high recognition accuracy.

Spatial Independence and Parallelism. Identifying faces in di�erent re-

gions of the image is spatially independent. Furthermore, recognizing each de-

tected face can be executed simultaneously. To take full advantage of such

opportunities for parallelism, we divide the image into spatial blocks and pro-

cess them in a pipelined and parallel manner using heterogeneous processors on

mobile and cloud. This helps optimizing the latency of multi-DNN execution

on high-resolution images.

4.6.2.2 Content-Adaptive Pipeline Selection

We develop techniques to optimize the latency of complex multi-DNN face

identification pipeline execution while maintaining high accuracy. Specifically,

Edge-Based Background Filtering rules out background regions where faces do

not exist at all. Variation-Adaptive Face Recognition selects di�erent recognition

pipelines depending on recognition di�culty.

Edge-Based Background Filtering. Running face detection on regions where

faces do not exist at all (e.g., background) is a wasteful computation. To mit-

igate the problem, we use edges in the image to rule out such regions before

running the identification pipeline. Specifically, given a frame as shown in Fig-

ure 4.13(a), we detect edges as in Figure 4.13(b), filter out blocks with edge

intensity below a threshold as depicted in Figure 4.13(c), and run face de-

tection only on the remaining blocks. Note that edge detectors are extremely

42

(a) Raw frame. (b) Edges. (c) Filtered.

Figure 4.13: Edge-based background filtering.

lightweight, especially considering that we can even detect edges on downsam-

pled images. For example, the time complexity of Canny edge detector [137] for

H ◊W frame is O(HW · log(HW)), and it runs in less than 2 ms for 360p frame

on LG V50. Thus, its overhead is minimal even when the edge detection is not

e�ective for some scenes having full of objects and no background regions.

Variation-Adaptive Face Recognition. State-of-the-art recognition net-

works are designed very complex (e.g., heavy ResNet backbone with a large

number of batch normalization layers) to accurately identify faces even under

high variations in pose, illumination, etc. However, employing such heavy net-

works for faces in ideal conditions is an overkill. For example, MobileFaceNet [138]

and ResNet50-based ArcFace [21] achieve comparable accuracy on LFW [139]

dataset composed of large, frontal faces (98.9% vs. 99.3%), whereas inference

time di�ers by more than 20◊ (14 ms vs. 287 ms). Therefore, we aim to opti-

mize latency by adaptively processing each face depending on its variation (i.e.,

recognition di�culty).

Figure 4.14 depicts our Variation-Adaptive Face Recognition, which uti-

lizes the size of bounding box and 5 face landmarks detected by RetinaFace [2]

detector (other state-of-the-art face detectors also provide 5 landmarks as out-

puts). First, small faces are processed by ICN and then by ResNet50-based

ArcFace [21]. For large faces, we estimate the pose using the detected land-

marks; for example, if the angle between the line connected by points (2, 3)

43

Is the resolution sufficient?

Is the pose frontal?

No Yes

No Yes

ICN+ heavy
recognition

�
�

�

� �

�ࣂ�

Heavy recognition

� �

�

� �

� ࣂ

Lightweight recognition

Figure 4.14: Variation-Adaptive Face Recognition.

and (2, 5) measured in counterclockwise direction is negative, we can tell that

the face is looking to the right. As faces with pose variations are di�cult to

accurately identify, they are also processed by ResNet50-based ArcFace (ICN is

not needed here as resolution is already su�cient). The remaining faces (large

and frontal) which are easy to identify are processed by MobileFaceNet [138].

We finally note that the content-adaptive inference can also be integrated

inside the face recognition model (e.g., through learnable input filtering [140]

or early-exit [14] techniques). While our Variation-Adaptive Face Recognition

technique uses lightweight features (resolution and landmarks) to estimate recog-

nition di�culty, such model-integrated approaches can make the adaptation

more fine-grained and accurate.

4.6.2.3 Execution Planning

We optimize the latency of multi-DNN face identification pipeline by scheduling

each component DNN inference execution to the most suitable processor on

mobile and cloud.

O�oading Decision. As our target scenarios assume crowded outdoor envi-

ronments with congested 3G/LTE network, o�oading high-resolution images

for detection is impractical; instead, we o�oad only the detected faces. Specifi-

44

Algorithm 1 Combined operational flow of EagleEye
1: while application is running do

2: Result Ω {}

3: Frame Ω acquireFrameFromCamera()

4: Edges Ω EdgeDetector(Frame)

5: NonBackground Ω BackgroundFilter(Edges) Block in NonBackground

6: Faces Ω FaceDetection(Block) face in Faces

7: Result ΩResultfiAdaptiveFaceRecognition(face)

8: Render Result on screen

cally, LR faces are suitable for o�oading, as their data sizes are very small (e.g.,

14◊14 pixels) whereas the required computation (i.e., ICN and heavy recogni-

tion) incurs significant latency on mobile (e.g., 166+287 ms). We also o�oad

large, profile faces, and leave only the large, frontal faces to be processed by

lightweight recognition on mobile.

Mobile Processor Mapping. The mobile needs to run both detection and

lightweight recognition. However, simply multithreading the execution on GPU

does not help optimize latency, as mobile GPUs lack preemptive multitasking

support. Therefore, we utilize heterogeneous processors (CPU and GPU) to

parallelize the execution. As dynamically switching the mapping over time is

challenging due to high latency overhead of loading DNN on mobile GPUs

(e.g., 2 seconds for 118 MB ResNet50-based ArcFace [21] on LG V50 with

TensorFlow-Lite), we statically run detection on CPU and recognition on GPU

considering the following aspects:

• Memory I/O. Running face detection on GPU requires high-resolution

images loaded onto GPU memory, and output feature maps from di�erent

stages in the feature pyramid (whose size is proportional to the input image

size) copied back to CPU to be post-processed to bounding boxes. Consid-

ering memory overhead, it is more suitable to run face recognition on GPU

whose input/output are small-sized faces and 1D feature vectors.

45

Time

①②③
④ Mobile CPU

Mobile GPU

Cloud GPU

D
on ①

D
on ②

D
on ③

D
on ④

I
+
H

L L L L L L L L L L

H
I
+
H

I
+
H

I
+
H

I
+
H

H
I
+
H

I
+
H

D Detection L Lightweight
recognition H Heavy

recognition
I+H ICN + Heavy

recognition

Figure 4.15: Spatial Pipelining on heterogeneous processors.

• Inference time. Besides, we observe that the inference speed slowdown of

RetinaFace detector running on CPU is 1.22◊ (648 vs. 793 ms), whereas it

is 2.07◊ for MobileNetV1-based ArcFace recognizer (14 vs. 29 ms). There-

fore, running detection on CPU and recognition on GPU is more feasible to

optimize overall latency, especially when the number of faces is large.

4.6.2.4 Spatial Pipelining

To further optimize the latency, we exploit the spatial independence of the

workload by processing each image sub-block in a pipelined and parallel man-

ner. As depicted in Figure 4.15, given non-background blocks in a scene, we

detect faces in one block on mobile CPU, while simultaneously processing faces

detected in another block on mobile and cloud GPU.

Note that we need to divide the image into blocks in an overlapping manner

with padding, so as to prevent faces from being split across di�erent blocks

(and thereby failing to be detected). While fine dividing increases the chance of

higher parallelism, it also increases the computational overhead due to padding.

Based on our empirical evaluation on such tradeo� in Chapter 4.8.4, we divide

an image into 4x4 blocks.

46

4.6.2.5 Putting Things Together

Algorithm 1 summarizes the combined operational flow. Upon acquiring a frame

from the camera, we detect edges (line 4) and filter out background (line 5).

For non-background blocks (line 5), we run face detector on CPU (line 6) and

process each face adaptively in mobile or cloud GPU (lines 6–7) in a pipelined

and parallel manner. Finally, the recognition result is rendered on the screen.

4.7 Implementation

Mobile. We implement the mobile side of EagleEye on two commodity smart-

phones running on Android 9.0.0: LG V50 with Qualcomm Snapdragon 855

and Adreno 640 GPU and Google Pixel 3 XL with Qualcomm Snapdragon 845

and Adreno 630 GPU. Unless stated otherwise, we report evaluation results

on LG V50. RetinaFace [2] and MobileFaceNet [138] are implemented using

TensorFlow 1.12.0 and converted to TensorFlow-Lite for mobile deployment.

Image processing functions (edge detection, face cropping) are implemented us-

ing OpenCV Android SDK 3.4.3. The mobile device is connected to the server

via a TCP connection.

Cloud. We implement the cloud side of EagleEye on a desktop PC running

on Ubuntu 16.04 OS, equipped with Intel Core i7-8700 3.2 GHz CPU and an

NVIDIA RTX 2080 Ti GPU (11 GB RAM). We implement most of the cloud-

side functions in Python 3.5.2 and utilize Numba [141], a Just-In-Time (JIT)

compiler for Python, to accelerate the performance comparable to C/C++. ICN

and ResNet50-based ArcFace [21] are implemented using TensorFlow 1.12.0.

47

(a) Low. (b) Medium. (c) High.

Figure 4.16: In-the-wild dataset examples.

Table 4.3: Average and standard deviation of the composition of each face type

in the test dataset.

Low Medium High

Large frontal 3.00±2.62 3.85±2.11 5.20±3.73

Large profile 1.00±0.76 1.50±1.49 2.8±1.78

Low-resolution 3.07±1.75 5.45±2.50 8.87±3.64

Total 7.07±1.79 11.10±3.74 16.87±4.78

4.8 Evaluation

4.8.1 Experiment Setup

DNN training. We train our face detector on WIDER Face [142] train dataset.

Also, we train our face recognizers (both the light and heavy models) on

MS1M [124] dataset. ICN is trained on FFHQ dataset [143]. As FFHQ dataset

does not contain face landmark labels, we employ state-of-the-art network [144]

to estimate face landmarks and use them as ground truth labels.

Datasets. We evaluate EagleEye with two di�erent datasets: single faces and

crowded scenes. For single faces, we collect 50 identities in VGGFace2 [125]

testset, with 50 samples per each identity. For the scenes, we use in-the-wild

images (mostly containing faces of a single ethnicity group) collected and clas-

sified depending on crowdedness (i.e., Low, Medium, and High) as described in

Chapter 4.3.1 (examples are shown in Figure 4.16). The detailed composition of

48

the faces in the scene dataset are summarized in Table 4.3. We also categorize

the dataset depending on whether the target is present or not. Furthermore, we

also collect scene images from WIDER Face [142] test dataset, which contains

diverse ethnicity groups (15 images per each crowdedness category).

Evaluation protocols and metrics. We evaluate the performance of EagleEye

with the following evaluation protocols and metrics:

• Latency: the time interval between the start and the end of the pipeline

execution, measured on mobile.

• Equal Error Rate (EER): the value in the ROC curve where the false

acceptance and false rejection rates are identical.

• True Positive (TP) & False Positive (FP): the rate in which the test

faces are correctly/wrongly accepted as the target, respectively, given a fixed

threshold.

• Top-K accuracy: the percentage of images in which the distance between

the target face and the probe is within the top K-th among all faces in the scene

(applies for scenes with the target present). This can also be interpreted as recall

for a single target.

• False alarm: the percentage of images in which the system falsely detects

that the target is present in the scene (applies for scenes with the target absent).

Comparison schemes. We compare the performance of EagleEye with the

following comparison schemes:

• 2-step baseline runs the conventional 2-step identification pipeline (com-

posed of MobileNetV1-based RetinaFace and ResNet50-based ArcFace) all on

the mobile sequentially.

• 3-step baseline runs our proposed 3-step identification pipeline (com-

posed of MobileNetV1-based RetinaFace, ICN, and ResNet50-based ArcFace)

all on the mobile sequentially.

49

 0

 2

 4

 6

 8

 10

2-step 3-step Offload
(Raw)

Offload
(JPEG)

EagleEye

L
a

te
n

c
y

 (
s

)

(a) End-to-end latency.

 0
 0.2

 0.4
 0.6
 0.8

 1

2-step Offload
(JPEG)

EagleEye

A
c

c
u

ra
c

y

Top-1 Top-2 Top-3

(b) Top-K Accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

Our
dataset

WIDER
Face

R
a
te

(c) False Alarm in-

crease.

Figure 4.17: EagleEye performance overview.

• Full o�oad fully o�oads the image to the cloud over LTE and runs

the 3-step identification pipeline. The image is sent either raw or after JPEG

compression. Note: we run this experiment under a normal LTE performance

(¥11 Mbps), and it is likely that the performance of full o�oading could be

worse than what we report in crowded outdoor environments.

4.8.2 Performance Overview

We first evaluate the overall performance of EagleEye compared with alterna-

tives for High scenes. Figure 4.17 shows the results. Firstly, as shown in Fig-

ure 4.17(a), EagleEye outperforms the latency of the 3-step baseline by 9.07◊

(with only 108 KBytes of data o�oaded to the cloud). Also, it shows the high-

est Top-K accuracy (80% of Top-2 accuracy vs. 53% for the 2-step baseline)

at the reasonable increase of false alarms (Figure 4.17(b) and (c)). A reason

for the increase of the false alarm is that our dataset contains the faces of the

same ethnicity group, increasing the chance of similar-looking identities with

the target. For the WIDER Face dataset which contains more diverse ethnicity

groups, we did not observe any false alarm increase. Note that the accuracy and

false alarms are better with Medium and Low scenes, as shown in Figure 4.25.

Interestingly, while fully o�oading JPEG-compressed images achieves the

smallest latency, we observe that its Top-2 accuracy drops to 50% as shown in

Figure 4.17(b), as compression artifacts hinder reconstruction performance of

ICN and recognition network. We could apply video compression (e.g., H.264) to

50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
 A

c
c

e
p

ta
n

c
e

False Acceptance

112x112
30 probes
5 probes
3 probes
1 probe
14x14

(a) Ideal case.

 0
 0.2
 0.4
 0.6
 0.8

 1

112x112 14x14 1
probes

3
probes

5
probes

10
probes

30
probes

R
a
te

True positive False positive

(b) Our scenario.

Figure 4.18: Performance of Identity Clarification Network.

(a) 14◊14. (b) Baseline ICN. (c) Ideally fine-tuned. (d) Fine-tuned to

identity #6 (orange).

Figure 4.19: Feature map visualization for ICN.

minimize latency more, but it would further degrade performance as it adopts

motion vector-based inter-frame encoding, incurring additional distortion in

the faces. As compression artifact reduction is a challenging problem, recent

attempts have been made to design specialized DNNs for it [145,146]. Thus, we

conjecture that solving this issue will not be trivial and leave detailed investi-

gation as future work.

4.8.3 Identity Clarification Network

We evaluate the performance of ICN with a varying number of probes used for

Identity-Specific Fine-Tuning. Figure 4.18 shows the results for (a) ideal cases

(ICN trained for individual faces) and (b) our scenarios (ICN trained with a

target identity), respectively. For the ideal case, ICN recovers the accuracy of

14◊14 faces similar to 112◊112 with about 5 probes only. For our scenarios,

51

(a) 112◊112. (b) 14◊14. (c) Baseline. (d) Fine-tuned

Figure 4.20: Reconstruction example of ICN.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15
 1
 1.5
 2
 2.5
 3
 3.5

D
e
te

c
ti

o
n

 r
a
te

L
a
te

n
c
y
 g

a
in

 (
x
)

Edge threshold

Detection rate
Latency gain

Figure 4.21: Back-

ground filtering.

as the number of probes increases, ICN injects more facial details of the target

to the input LR face, significantly increasing the chance to identify the target

with a relatively small increase in the FP. Figure 4.18(b) shows that the gain

in TP (78%) outweighs that of FP (14%). We further analyze the reasons for

accuracy improvement using a simple example with the 8 identities (the same

setting as in Chapter 4.3.2). From the 14◊14 LR faces whose features severely

overlap with each other (Figure 4.19(a)), the baseline ICN (without fine-tuning)

clusters each identity’s features more tightly, but some overlapping regions still

remain (Figure 4.19(b)). When enhancing each LR face with ICN fine-tuned

with corresponding probes, we observe each feature cluster is separated even

more clearly (Figure 4.19(c)). In the case of applying ICN fine-tuned to target

identity #6 (orange samples), Figure 4.19(d) shows that the samples corre-

sponding to the target are grouped to form a tight cluster. While other identity

groups are pulled towards the target, the cases where the pulled samples overlap

with those of the target (false positive) are not dominant.

Finally, Figure 4.20 shows the face reconstruction examples of ICN. Baseline

ICN reconstructs a face quite similar to the ground truth but lacks some fine

attributes (e.g., wrinkles) in the ground truth face. Identity-Specific Fine-tuning

enables the ICN to instill such details in the reconstructed face, thus enabling

accurate recognition.

52

(a) Raw frame. (b) Edges. (c) 59% left. (d) 30% left. (e) 8% left.

Figure 4.22: Example operation of Edge-Based Background Filtering.

4.8.4 Content-Adaptive Parallel Execution

4.8.4.1 Edge-Based Background Filtering

Next, we evaluate the performance of our Edge-Based Background Filtering

method. Figure 4.21 shows the detection rate and latency gain as we increase

the edge intensity threshold. Higher threshold results in higher latency gain,

but at the cost of loss in detection rate. We observe threshold between 0.05

and 0.08 balances the tradeo�, and we empirically set it as 0.08 which achieves

1.76◊ latency gain with 8.7% loss in detection rate. Figure 4.22 shows an ex-

ample of image blocks being filtered for di�erent thresholds (covered in black

in Figure 4.22(c)–(e)). With a higher threshold, blocks containing large faces

starts to get ruled out. The tradeo� can be more aggressively made if our sys-

tem can only focus on identifying distant, small faces while relying on users to

recognize large, closer faces.

4.8.4.2 Variation-Adaptive Face Recognition

To evaluate the e�ectiveness of Variation-Adaptive Face Recognition, we syn-

thesize a group of faces, which contains 10 samples per each case classified in

Figure 4.14. We compare our technique (adapting the recognition pipeline based

on pose and resolution) with the following baselines: (i) running a lightweight

recognizer (MobileFaceNet [138]) on all faces (denoted as Base light), (ii) run-

ning ICN and a heavy recognizer (ResNet50-based ArcFace [21]) on all faces

(denoted as Base full), (iii) adaptively applying the lightweight and heavy rec-

53

 0
 3
 6
 9

 12
 15

Base
light

Base
full

Res-
only

Ours
 0
 0.2
 0.4
 0.6
 0.8
 1

L
a

te
n

c
y

 (
s

)

A
c

c
u

ra
c

yLatency Accuracy

Figure 4.23: Performance of

Variation-Adaptive Face Recog-

nition.

 0
 2
 4
 6
 8

Sequential Pipelining

L
a

te
n

c
y

 (
s

)

RetinaFace
MobileFaceNet
ICN
ArcFace

(a) End-to-end la-

tency.

 0

 1

 2

 3

1x1 2x2 4x4 8x8 12x12

L
a

te
n

c
y

 (
s

)

GPU CPU

(b) Detection latency.

Figure 4.24: Spatial Pipelining perfor-

mance.

ognizers based on the resolution only (denoted as Res-only). We did not apply

our parallel and pipelined execution for this experiment so that only the relative

comparisons are meaningful.

Figure 4.23 shows that our approach achieves comparable accuracy with

Base full, while reducing the latency by 1.80◊. On the contrary, Base light and

Base full su�er from low accuracy and significantly high latency, respectively.

The Res-only yields fairly high accuracy gain with small latency overhead, but

the accuracy remains lower than Base full as large profile faces processed by

light MobileFaceNet results in inaccurate decisions.

4.8.4.3 Spatial Pipelining

Figure 4.24(a) shows the performance of Spatial Pipelining on High scenes.

Our pipelining yields 5.03◊ acceleration compared to the baseline that runs

face detection and processes faces with Variation-Adaptive Face Recognition

sequentially using the mobile GPU (denoted as Sequential).

We further analyze the e�ect of the number of blocks to parallelize. Fig-

ure 4.24(b) shows the latency of face detector with varying number of blocks.

We need to divide the image in an overlapping manner to prevent faces split

across blocks, which increases computational overhead due to repetitive face

detection on the overlapping regions. Thus, the larger the number of blocks,

the higher the latency overhead. Considering the tradeo� between such cost

54

 0

 2

 4

 6

 8

 10

Low Medium High

L
a
te

n
c
y
 (

s
)

3-step EagleEye

(a) Latency.

 0

 2

 4

 6

 8

 10

3-step A A+P A+P+E

L
a
te

n
c
y
 (

s
)

(b) Latency break-

down.

 0

 0.2

 0.4

 0.6

 0.8

 1

Low Medium High

T
O

P
-3

 A
c
c
u

ra
c
y 2-step EagleEye

(c) Top-3 Accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

Low Medium High

F
a
ls

e
 A

la
rm

 I
n

c
re

a
s
e

Our dataset
WIDER Face

(d) False alarm in-

crease.

Figure 4.25: End-to-end latency for varying crowdedness.

and gain for parallelism, we divide the image into 4◊4 blocks by default.

4.8.5 Performance for Varying Crowdedness

Figure 4.25(a) shows the end-to-end latency comparison of 3-step baseline and

EagleEye. The latency of EagleEye remains similar regardless of crowdedness,

mainly because we pipeline and parallelize the execution on mobile and cloud.

However, the latency of 3-step increases with more crowded scenes since recog-

nition latency increases proportionally to the number of faces. Accordingly, we

conjecture that the latency gain will be greater as crowdedness increases even

more. Furthermore, current bottleneck remains at the face detection stage, and

we expect that the latency will be further reduced as face detectors become

more optimized.

Figure 4.25(b) shows the latency breakdown on High scenes for gradually

adding on the components of EagleEye: Variation-Adaptive Face Recognition

(A), Spatial Pipelining (P), and Edge-Based Background Filtering (E). Com-

bining each component yields a synergetic gain, achieving 9.07◊ acceleration

compared to the 3-step baseline.

Finally, Figure 4.25(c) shows the Top-3 accuracy and false alarm increase

of EagleEye compared to the 2-step baseline. Overall, EagleEye yields 27.6%

accuracy gain, with accuracy above 80% even for High scenes. Figure 4.25(d)

shows that at the cost of such accuracy gain, EagleEye results in 19.1% increased

false alarm. Such increase is due mainly to the fact that our dataset contains

55

 0
 2
 4
 6
 8

 10

Low Medium Hard

L
a

te
n

c
y

 (
s

) 2-Step 3-Step EagleEye

Figure 4.26: Latency evaluation on Google Pixel 3 XL.

the people with the same ethnicity, and we observe no increase in false alarm

in case of WIDER Face dataset.

4.8.6 Performance on Other Mobile Devices

Lastly, we evaluate the end-to-end latency on Google Pixel 3 XL to validate

the performance of EagleEye on other mobile devices. The inference times of

MobileNetV1-based RetinaFace, ICN, ResNet50-based ArcFace, and Mobile-

FaceNet are 918, 225, 193, 18 ms, respectively. Figure 4.26 shows that the

latency performance of EagleEye and gain compared to 3-step baseline are sim-

ilar (8.14◊ for Hard scenes) to previous results, indicating that EagleEye shows

consistent performance on other devices.

56

Chapter 5

Pendulum: Network-Compute Joint Scheduling

for E�cient and Accurate Live Video Analytics

5.1 Introduction

In this Chapter, we design Pendulum, an end-to-end system for fast and accurate

cloud o�oading-based live video analytics. For instance, a police agency deploys

CCTVs and o�cers with AR glasses in a city for monitoring (e.g., criminal

chasing, action recognition). Figure 5.1 illustrates such a deployment model,

where multiple clients stream video over shared cellular radio access networks

(RANs) to a GPU-equipped cloudlet located near the base station [147].

Live video analytics pipeline is composed of two stages: (1) Network: video

streaming over network and (2) Compute: real-time Deep Neural Network (DNN)

inference on edge server. The key to achieving high accuracy and throughput is

to flexibly adjust the pipeline configuration (config) of video bitrate and DNN

based on dynamic workload and resource availability, which is influenced by

scene complexity [5,10,40], network bandwidth [85], and server contention [14].

However, we observe that achieving both goals is challenging, as resource bottle-

necks alternate in complex patterns across the network and the compute stages.

57

Figure 5.1: Scenario: cloudlet-based person monitoring.

In a person monitoring app in Chapter 2.2.3, network and compute bottlenecks

occur 3 and 2 times each in a non-overlapping and switching pattern within

a 30s window, resulting from latency fluctuations of video streaming (a�ected

by encoding bitrate and channel status) and DNN inference (changed by the

number of people in the scene).

While prior works support adaptation to fluctuating resources, they are lim-

ited to single-stage scheduling (i.e., network [1,78,85,87] or compute [14,40]).1

They aim to minimize the target resource usage with minimal accuracy drop, as-

suming the other resource is su�ciently provisioned. However, they hardly han-

dle alternating resource bottlenecks, and thus su�er from throughput/accuracy

drop when the non-targeted resource is bottlenecked (Chapter 5.2.1). Also, a

simple combination of network- and compute-only schedulers incur sub-optimal

throughput/accuracy and resource cost (Chapter 5.2.2).

We present Pendulum, an end-to-end system designed for e�cient and ac-

curate live video analytics, employing a unique network-compute joint schedul-

ing approach. Upon encountering a bottleneck in one stage, it conserves the

resources in that stage and compensates for any potential drop in inference ac-

curacy by utilizing excess resources from the other stage. Our approach o�ers

two distinct benefits. First, it broadens the adaptation space. For example, by

reducing the minimum bitrate that satisfies the app accuracy requirement (fa-
1We refer to the single-stage scheduling as controlling the network or compute resources

independently, albeit it indirectly a�ects the remaining stage (e.g., adapting video resolution

changes DNN inference latency).

58

cilitated by using heavier DNNs for accuracy compensation), we can ensure a

more reliable and higher throughput/accuracy than single-stage scheduling un-

der bandwidth fluctuation. Second, it promotes a balanced allocation of network

and compute resources, circumventing the need for resource over-provisioning.

Our joint scheduling strategy draws from insights into the interplay between

video bitrate and DNN complexity. Complex DNNs, characterized by more lay-

ers and filters, can o�set accuracy losses from lower bitrates by extracting more

detailed visual features from scenes [148]. In particular, we found that a DNN

with a large number of layers enables a contextual understanding of the scene

(e.g., detecting an object not just by looking at it but also the objects around it),

which improves accuracy in low bitrate videos (Chapter 5.3.3). This concept is

supported by wider research in machine learning, highlighting that DNNs with

more layers o�er larger receptive fields for better scene interpretation [149,150]

and aligns with E�cientNet [148]’s principles of scaling input resolution, layers,

and filters in tandem. Utilizing these insights, we navigate through a broader

range of (bitrate, DNN) configs to satisfy application-specified accuracy require-

ments, thus adeptly handling alternating resource bottleneck scenarios.

While our approach sounds promising, realizing it entails the following chal-

lenges (Chapter 5.4.1). (i) Overhead for resource demand profiling. (Bitrate,

DNN) configs meeting the app accuracy requirement vary with the video con-

tent, yet profiling them requires executing multiple DNN inferences across dif-

ferent encoding bitrates, leading to substantial latency costs (e.g., 3.4s). (ii)

Inaccuracy in resource availability monitoring. Precisely estimating resource

availability proves di�cult, especially for RAN bandwidth. Conventional meth-

ods based on packet arrival statistics for video analytics [85, 151] fall short of

accurately assessing the RAN’s available excess bandwidth. (iii) Complexity

in resource scheduling. It is challenging to allocate shared bandwidth and GPU

resources to multiple users, each with its own set of resource demands and chan-

59

nel conditions. The scheduling falls into a multi-dimensional knapsack problem

(NP-hard) with a large search space caused by 2D (bitrate, DNN) config space.

We address the challenges with the following ideas (Chapter 5.4.2).

• Video content-aware demand profiler that activates with significant content

changes, profiling minimal set of configs and using interpolation to estimate

others based on network and compute dependencies (Chapter 5.5.1).

• RAN-aware availability monitor that utilizes the RAN Intelligent Controller

(RIC) in O-RAN architecture to gather real-time Resource Block schedul-

ing information, translating it into application layer bandwidth availability

(Chapter 5.5.2).

• Network-compute joint resource scheduler that implements our iterative max-

cost gradient algorithm to find approximate solutions for joint resource schedul-

ing. This algorithm optimizes user-specific configs based on the maximum

cost gradient, aiming to alleviate bottlenecks (Chapter 5.6).

We implement Pendulum on OpenAirInterface 5G RAN software stack [152,

153] and multi-GPU edge server, with app-level C++ scheduler. We conduct an

extensive evaluation with various video datasets and state-of-the-art (SOTA)

DNNs; Pendulum achieves up to 0.64 mIoU (mean Intersection-over-Union) ac-

curacy gain (from 0.17 to 0.81) and 1.29◊ higher throughput compared to SOTA

single-stage scheduling systems. Pendulum also achieves 25% lower resource cost

than the network-compute decoupled scheduling baseline.

Our key contributions are summarized as follows:

• To our knowledge, Pendulum is the first live video analytics system with

network-compute joint scheduling.

• We design an end-to-end system for joint scheduling, composed of (i)

e�cient and scalable joint scheduling mechanism and (ii) RAN-aware multi-

user joint resource scheduling algorithm.

• We conduct extensive evaluation on various datasets and state-of-the-art

60

Figure 5.2: Performance analysis of network-only scheduling with EAAR [1] (b:

bottleneck, nb: no bottleneck).

DNNs. Pendulum achieves up to 0.64 mIoU gain (from 0.17 to 0.81) and 1.29◊

higher throughput compared to state-of-the-art single-stage scheduling systems.

Pendulum also achieves 25% lower cost than decoupled baseline in multi-user

scheduling.

5.2 Limitations of Prior Works

To motivate Pendulum, we analyze why prior single-stage scheduling systems

fail in alternating resource bottleneck scenarios analyzed in Chapter 2.2.3.

5.2.1 Limitations of Single-Stage Scheduling

Throughput/accuracy drop. It is challenging to simultaneously achieve high

throughput and accuracy by controlling only a single stage. Figure 5.2 shows

the changes in bitrate and accuracy over time when serving a MOT17 [34]-04

video over an emulated RAN using EAAR [1], a network-only scheduling sys-

tem that optimizes bitrate by adjusting the encoding quality of regions of a

frame depending on whether or not objects were present in the previous frame.

As an accuracy metric, we use the mean intersection over union (mIoU), which

computes the overlap between the ground truth bounding box and the inference

output. EAAR e�ectively adjusts the bitrate to ¥5.68 Mbps with minimal accu-

racy drop compared to 8 Mbps encoding (EAAR (nb)). However, the through-

61

Figure 5.3: Accuracy changes while running decoupled schedulers. C-1/2 and

N-1 denote compute and network scheduling events, respectively.

put and accuracy drop when the network bandwidth drops below its capability.

When we throttle the bandwidth to 2 Mbps at t=10s using tc [154], EAAR

reduces the bitrate accordingly, incurring a significant mIoU drop (EAAR (b)).

Resource waste from over-provisioning. Allocating the right amount of re-

sources to the non-targeted stage (e.g., compute stage in the case of EAAR [1]) is

also challenging to avoid bottlenecks or wastage due to under/over-provisioning.

For example, in Figure 2.2(b), allocating 1 GPU to the user results in a 14% la-

tency violation rate, while allocating 2 GPUs incurs 62% resource waste. Elastic

resource provisioning has higher operational costs [155] or may not be possible

for edge server scenarios (e.g., dedicated private cluster [156]).

5.2.2 Why Simple Combination of Two Schedulers Fails?

Simply running two network and compute-only schedulers in a decoupled man-

ner (where each scheduler is unaware of the other) is also limited for two reasons.

First, uncoordinated scheduling timing leads to drops in throughput/accuracy.

For example, Figure 5.3 shows accuracy changes when serving the BDD [157]

video initially encoded at 8 Mbps with the E�cientDet [108] object detector

that has D0–D6 candidate backbones with varying complexities by using de-

coupled bitrate (EAAR [1]) and DNN adaptation (Chameleon [40]) schedulers.

Suppose the DNN scheduler first reduces the DNN from D5 to D2 (according to

accuracy profiling results) to optimize resource usage without violating the ac-

62

curacy requirement (C-1, t=6s). At t=10s, the network bandwidth is throttled

to 2 Mbps. The bitrate scheduler reduces the bitrate to below the bandwidth

to avoid throughput drop (N-1), violating the accuracy requirement. The prob-

lem persists until the next scheduling interval of the computer scheduler (C-2,

t=15s) when it increases the DNN back to D6. The problem may be alleviated

with more frequent scheduling, but it incurs overhead, especially for accuracy

profiling, often done by running multiple candidate DNNs [40].

In addition, decoupled scheduling leads to sub-optimal resource allocation

and waste in multi-user scenarios. This is mainly because it is unaware of dif-

ferent users’ sensitivities to the network-compute demand curve that depends

on video contents (i.e., a certain user may require more resources on the re-

maining stage for compensation when reducing bottleneck stage resources). For

example, equally reducing resource usage across multiple users without such

knowledge incurs 25% additional resource cost (Chapter 5.7.5).

5.3 Our Approach

5.3.1 Goals

Our goal is to design an end-to-end scheduling system that e�ectively handles

alternating resource bottlenecks while achieving the following properties.

High throughput and accuracy. We aim at end-to-end scheduling across

end users and edge servers to simultaneously achieve high throughput (e.g.,

real-time 30 fps processing) and high DNN inference accuracy.

Minimal operational costs. We also aim to minimize operational costs.

Specifically, network and compute costs vary depending on operators (e.g.,

1 Mbps streaming over 5G networks: $0.36 [158]–$0.54 [159] per hour, V100

GPU on cloud services: $0.74 [160]–$0.91 [161] per hour). Our goal is to e�-

ciently provision network/compute resources to avoid wastage from over-provisioning.

63

Figure 5.4: Single-stage vs. joint scheduling comparison.

No modification on the RAN scheduler. For generality, we impose no

modifications on the RAN scheduler, which is proprietary to the network oper-

ator.

5.3.2 Key Idea: Joint Scheduling

Our approach is to jointly schedule the network and compute resources. 5.4

shows a comparison between single-stage and joint scheduling. Network-only

scheduling, which controls the video bitrate with a fixed GPU utilization, can

only reduce the bitrate up to b1 without violating the accuracy requirement

(ACCth). If network bandwidth drops below b1, network bottleneck occurs,

dropping the throughput. However, joint scheduling utilizes additional compute

resources (up to the compute budget) to further reduce the bitrate to as low as

b2. This approach is feasible as, although the network and compute bottlenecks

alternate over time, they occur independently, and thus, surplus resources are

mostly available on the non-bottleneck stage. For example, in 2.2, the Pearson

correlation coe�cient of the two bottleneck events is -0.04, indicating a weak

correlation.

Figure 5.5 shows an example scenario that demonstrates the benefits of

joint scheduling. When the network bandwidth is su�cient, the joint scheduler

uses a high bitrate (e.g., 5 Mbps) and runs a lightweight E�cientDet-D0 [108]

64

Figure 5.5: Joint scheduling example for

network bottleneck scenario.

Figure 5.6: Illustration of the im-

pact of the receptive field.

(a) 1◊ GT box (b) 2◊ GT box (c) 3◊ GT box

Figure 5.7: Example detection results (box and confidence) for di�erent crop

sizes around ground truth (GT) box.

object detector. When the bandwidth drops, the bitrate is reduced accordingly

to 0.5 Mbps so that the video can be streamed in real-time. At the same time,

it uses additional compute resources by running the heavier E�cientDet-D6

to compensate for the possible loss of accuracy due to reduced video quality.

Similarly, it can reduce the DNN complexity and increase the bitrate if the

compute becomes a bottleneck.

Note that the joint scheduling is orthogonal to optimization techniques in

existing single-stage scheduling systems (e.g., RoI encoding [1] and frame fil-

tering [78]) and can be generally integrated into many state-of-the-art systems.

We show its benefits on DDS [87] and EAAR [1] in Chapter 5.7.2.

5.3.3 Why is Joint Scheduling Possible?

We analyze why a heavier DNN can compensate for the accuracy drop due to

a low bitrate (and vice versa). Heavy DNNs with many layers and filters can

capture diverse complex features [148]. Especially, their large receptive field

65

(a) E�cientDet-D0 (b) E�cientDet-D6

Figure 5.8: Detection accuracy in low-bitrate video.

size (i.e., how large area a DNN analyzes to detect objects) [149], which is

proportional to the number of layers [150], helps achieve high accuracy in low-

bitrate videos by analyzing the scene context with a wider view. For example,

as shown in 5.6, for low-bitrate videos, it is challenging to recognize the blurry

object as a car just by looking at it, whereas a large receptive field allows for

analyzing the surrounding context (e.g., road lane, nearby car) for accurate

recognition.

We quantitatively verify this on two common tasks: object detection and

segmentation. We emulate the e�ect of the receptive field by restricting the

input context information to a DNN; this is done by masking the DAVIS17 [162]

video (containing a single dominant object) video frame around the ground

truth object bounding box as shown in Figure 5.7. We run E�cientDet [108]

with D6 and D6 backbones consisting of 49 and 134 layers on the masked frame

and measure the accuracy (IoU of the object). Figure 5.8(a) shows that D0’s

accuracy remains low, regardless of the crop size. However, Figure 5.8(b) shows

that D6’s accuracy constantly improves with larger crop size, indicating that it

leverages its large receptive field for accurate detection. We observe a similar

trend for segmentation task: Figure 5.9 shows the accuracy for the same video

using FPN [163] with ResNet-18 and ResNet-101 backbones.

66

(a) FPN-ResNet-18. (b) FPN-ResNet-101.

Figure 5.9: Segmentation accuracy in low-bitrate video.

5.3.4 Joint Scheduling Problem Formulation

Our joint scheduling aims to allocate network and compute resources among

users while satisfying resource constraints and minimizing total resource cost,

given the following as input: Each user i has Ki accuracy-satisfying (bitrate,

DNN) configurations, Ci,j = (bi,j , ti,j), where j œ [1, Ki] and bi,j and ti,j are

the candidate encoding bitrates and inference latencies of the candidate DNNs,

respectively. The user streams video at fi fps, performs ni inferences per frame,

and experiences spectral e�ciency Ri (Mbps per Resource Block (RB)). There

are NRB,total RBs per each scheduling window, and the server has NGP U GPUs,

with available utilization time tth (s). Given this input, our joint scheduler finds

the cost-minimizing allocation Jú = {jú
1 , ..., jú

N
} by solving:

min
J

CostNetwork (
q

i
bi,j) + CostCompute (

q
i
ti,j)

s.t.
q

i
fi · ni · ti,j Æ tth · NGP U ,

q
i
NRB,i,j Æ NRB,total, where NRB,i,j = bi,j/Ri ’i

(5.1)

The first constraint enforces that the total inference latencies do not exceed

the compute budget. The second constraint enforces that the allocated bitrates

converted to RBs do not exceed the available RBs in the RAN.

67

5.4 Design Overview

5.4.1 Challenges

While our joint scheduling approach sounds promising, realizing it in practical

settings presents three challenges:

Resource demand profiling overhead. Estimating which (Bitrate, DNN)

configs satisfy the app accuracy requirement is challenging due to two reasons

(Chapter 5.5.1). First, the demand dynamically changes depending on video

content (e.g., object speed, lighting condition). Second, due to black-box na-

ture of DNN inference, it is inevitable to profile them by running multiple

candidate DNNs over the video encoded into multiple bitrates, incurring sig-

nificant overhead (e.g., full search of 5 bitrates◊7 DNNs takes 3.4s on an RTX

2080 Ti GPU).

Inaccuracy in monitoring resource availability. Accurately tracking re-

source budgets is also non-trivial. Especially, network bandwidth estimation

techniques in conventional packet arrival statistics-based video streaming/analytics

cannot be applied in joint scheduling (Chapter 5.5.2), as they cannot estimate

the RAN’s surplus bandwidth capacity determined by idle number of RBs and

users’ spectral e�ciencies (Chapter 5.5.2).

Complexity in resource scheduling. Allocating shared RAN and server re-

sources to multiple users is challenging. This is because users have di�erent

resource demand sensitivities (i.e., amount of resource required to compensate

when reducing the bottleneck stage resource by a unit). Moreover, due to user’s

di�erent channel status, RAN’s total bandwidth capacity heavily varies depend-

ing on scheduling decisions (e.g., by up to 9◊) [164], which is not considered in

prior multi-user video analytics scheduling (e.g., in GPU clusters [5,93] or shared

wired network [156]). Such scheduling falls into a multi-dimensional knapsack

problem (NP-hard) with a large search space due to the (bitrate, DNN) config

68

space.

5.4.2 Key Ideas

We address the above challenges with three key ideas.

Video Content-aware Demand Profiling (Chapter 5.5.1): We design a run-

time profiler that estimates resource demands with minimal overhead. It trig-

gers profiling only upon significant content change. During each profiling event,

it only profiles the accuracy of a minimum number of configs and models the

dependencies of the network and compute stages to interpolate the rest (e.g.,

accuracy gain from increasing bitrate may saturate as DNN becomes heavier).

RAN-aware Availability Monitoring (Chapter 5.5.2): We leverage the RAN

Intelligent Controller (RIC) in the standard O-RAN architecture to obtain real-

time physical layer Resource Block (RB) scheduling information from the RAN

and convert it to app layer bandwidths.

Demand Curve-aware Scheduling (Chapter 5.6): To make the NP-hard

scheduling problem tractable, we devise an iterative max-cost gradient algo-

rithm that computes an approximate solution with O(MN) complexity for N

users with M configs. It first finds the user-wise optimal configs, and iteratively

adjusts the user with the maximum cost gradient (i.e., maximum expected de-

crease in bottleneck resource usage by increasing a unit usage of the other

resource) until bottleneck resolves.

5.4.3 System Architecture

Figure 5.10 shows the architecture of Pendulum and its end-to-end workflow.

Data Flow. Users specify their app QoS requirements (latency, accuracy) per

User Equipment (UE), and each UE (we interchangeably use UE and user

throughout the paper) streams their live video encoded at the target bitrate.

69

Figure 5.10: Pendulum system architecture (Yellow: video analytics pipeline,

Green: Pendulum components).

After receiving and decoding the frames, the server performs the target DNN

inference and aggregates the results.

Control Flow. Network-compute joint scheduler finds resource allocations

across users to minimize overall resource usage (Chapter 5.6). To provide the re-

source demands and availability needed for scheduling, the network-compute de-

mand profiler (1) dynamically triggers profiling only during large scene changes

and (2) minimizes the number of config lookups (Chapter 5.5.1). Profiling re-

sults are combined with resource usage and budget monitored by the resource

availability monitor (Chapter 5.5.2) for joint scheduling enabled by controlling

video bitrate and DNN complexity knob pair (Chapter 5.5.3).

5.5 Joint Scheduling Mechanism

We describe key components of Pendulum that e�ciently profile resource de-

mands, monitor resource availability, and apply joint scheduling decisions.

70

(a) Static scene, good lighting (b) Dynamic scene, poor lighting

Figure 5.11: Demand curves for di�erent scenes. Blue/red points: configs

above/below the accuracy requirement, green curve: Pareto-optimal configs.

5.5.1 Network-Compute Demand Profiler

5.5.1.1 Goal and Challenges

The profiler’s goal is to analyze the Pareto-optimal demand configs of the user’s

live video stream. We define that a (bitrate, DNN) config (b, t) is Pareto-optimal

if (b, t) satisfies the accuracy constraint and no other (bÕ, t) and (b, tÕ) exists s.t.

bÕ < b, tÕ < t. Profiling is challenging due to two reasons.

• Fast-changing demand curve: Pareto-optimal configs frequently change

over time depending on the scene content. Figure 5.11 shows an example on a

BDD [157] video for 8 bitrates and 7 E�cientDet [108] backbones. In a static

scene (the car is not moving) with good lighting conditions (Figure 5.11(a)), it

is easy to detect objects from a low-bitrate video with lightweight backbones.

Thus, the Pareto-optimal configs have small b, t values. In contrast, the values

become larger for dynamic scenes (the car is moving) with poor lighting

conditions (Figure 5.11(b)). Changes can be fast; cost-optimal YOLOv5 [33]

backbone for 4 Mbps bitrate changes every 4.4s for BDD [157] video.

• High profiling overhead: Each demand profiling event requires a 2D (bi-

trate, DNN) search space, involving repetitive DNN inferences over a frame

encoded in multiple bitrates. Frequent profiling (e.g., fixed-interval, peri-

odic [40]) incurs significant resource overhead. For example, exploring all

71

search space composed of 7 E�cientDet backbones (D0-D6) and 5 bitrates

over a single frame takes 3.4s on RTX 2080 Ti GPU. Triggering this every

2s incurs ¥50% overhead compared to 30 fps inference serving).

5.5.1.2 Lightweight Scene Change Detector

Two categories of features can be utilized for scene change detection: heavy-but-

accurate high-level (e.g., SIFT [165]), SURF [166]) and lightweight-but-noisy

low-level. We adopt a lightweight feature ensemble approach for fast and accu-

rate scene change detection. We choose the following features, which capture

di�erent aspects of scene changes in a complementary way. They are highly cor-

related with the demand changes, allowing for e�ective skipping of unnecessary

profiling (Chapter 5.7.5).

• Camera motion: We employ the Average Motion Vector [1] to identify scene

transitions. A scene change is detected when the sum of the average motion

vector magnitudes (derived directly from the video codec, thus eliminating

additional processing) exceeds the threshold th1.

• Object motion: A scene change is also gauged by observing the bounding

box drift. We assert a change when the mIoU metric between the reference

frames and the current frames drops below the threshold th2.

• Lighting condition: A scene change is ascertained when the chi-square

distance between the histograms of the reference and the current frames,

called Color Histogram Di�erence [18], exceeds the threshold th3.

We detect scene change when two or more conditions are met. We use the

MOT [34] and BDD [157] datasets to empirically set the thresholds th1, th2,

and th3 as 0.5.

72

(a) 1.5 Mbps bitrate. (b) 6 Mbps bitrate.

Figure 5.12: Accuracy gain from DNN backbone increase (D0 to D6) varies

depending on video bitrate.

5.5.1.3 Intra-Frame Profiler

To avoid an exhaustive full search of multi-dimensional config space, we propose

the weighted multi-knob accuracy interpolation inspired by the linear multi-knob

accuracy interpolation introduced by Chameleon [40]. The prior approach is

based on the knob independence assumption: accuracy gain from increasing one

config value is independent of the remaining configs. Thus, it profiles each config

axis (e.g., bitrate, DNN) with fixed remaining-stage values and interpolates

the rest. However, such an approach misses the interaction e�ect between the

network and the compute stages, thus resulting in low profiling performance

(e.g., low accuracy or low config search reduction). We improve this by adopting

weights. Figure 5.12 illustrates our key insight: IoU increase when changing the

backbone from D0 to D6 saturates as the bitrate is higher (as for high-quality

6 Mbps bitrate the D0 backbone already finds the object accurately). To take

this into account, weighted multi-knob interpolation works as follows. Suppose

it profiles the backbone axis with bitrate fixed to b0. Then it interpolates the

accuracy gain from increasing the DNN backbone from Dj to Dj+� with bitrate

bi as

ACC(bi, Dj+�) ≠ ACC(bi, Dj) = w(bi ≠ b0)◊
!
ACC(b0, Dj+�) ≠ ACC(b0, Dj)

"
for 0 Æ i Æ N.

(5.2)

ACC(bi, Dj) is the accuracy of the config (bi, Dj), and w(bi ≠ b0) is the weight

factor; for Chameleon [40], w(bi ≠ b0) = 1. We model w(bi ≠ b0) as linear, and

73

fit w(0) = 1 and w(bN ≠ b0) = 0.3 using our evaluation datasets (Chapter 5.7).

For ground truth labels, we use golden config output (i.e., heaviest backbone

on highest bitrate) similar to prior works [40,78,85].

5.5.1.4 DNN Inference Latency Profiler

The inference latencies of all candidate DNNs are profiled o�ine, stored as a

look-up table, and updated online upon each inference completion. For two-

stage tasks (composed of detection and analysis as in Equation 2.1), we also

track the number of objects per frame with moving average filtering. To improve

latency predictability of DNN inference, we make the following design decisions

similar to prior work [167].

No multithreading. We do not use multithreading across users, as it only

achieves a 25% throughput gain at the cost of ¥100◊ tail latency increase [167].

No model loading latency. Considering recent GPU memory sizes (e.g., 24

GB for Titan RTX, 48 GB for RTX A6000), we assume that all backbones

are loaded into GPU memory (e.g., 6.5 GB for 7 E�cientDet [108] backbones,

10.4 GB for 7 FPN [168] backbones), and thus no model switching overhead.

5.5.2 Resource Availability Monitor

5.5.2.1 RAN-Informed Network Availability Monitor

Network availability is determined by the number of available RBs and the

user’s channel status (per-RB bandwidth or spectral e�ciency). Conventional

video streaming/analytics systems (e.g., WebRTC) use packet size and arrival

timestamps for bandwidth estimation [85,151]. However, such approaches rely-

ing on packet-level information on the application side have a critical limitation

in that they cannot estimate the remaining bandwidth capacity (i.e., how much

additional bandwidth we can use when the compute becomes a bottleneck). Fig-

74

Figure 5.13: App-side packet-level bandwidth estimation cannot know RAN’s

remaining bandwidth capacity.

ure 5.13 shows a 2-user example (frame sizes 6 and spectral e�ciencies 2 and

1). Packet-level estimation not only underestimates spectral e�ciency (due to

sharing from underlying RB scheduler, e.g., Proportional Fair), but also cannot

know how many idle RBs remain.

To address this problem, we use the RAN’s physical layer RB scheduling

information for accurate bandwidth capacity estimation. While RAN-awareness

has been proven to improve app performance (e.g., video streaming [169], web

browsing [170], congestion control [171]), applying existing solutions is limited

in two aspects. First, they often require modifications in cellular firmware (e.g.,

to decode control channel [171]), which is unavailable in commodity devices.

Second, they are user-side solutions, incurring a monitoring delay when aggre-

gated by the server for scheduling.

Instead, we use RAN Intelligent Controller (RIC) in the O-RAN stan-

dard [172] to obtain information from the base station (eNB/gNB) to the edge

server. RIC has recently been optimized for <10 ms monitoring delay [173,174],

which enables accurate resource estimation and scheduling. Specifically, we use

E2 [175], a near-real time interface between the base station and app (xApp). E2

defines the functionality that can be monitored or controlled as service mod-

els (SMs), and we build our interface atop KPM (Key Performance Metric)

SM [176] for resource monitoring. Figure 5.14 shows the RIC message format

used in Pendulum:2 we monitor the total number of RBs, the number of users
2Microsoft’s recent Programmable RAN with dynamic SM [177,178] makes dynamic config

75

struct sched_info{

int N_total_RBs;

int n_users;

ue_stats* stats;

};

struct ue_stats{

double TBS;

int N_RBs;

};

Figure 5.14: RIC message

format.

Figure 5.15: Iterative Max Cost Gradient

algorithm example (2 iterations, CG: cost

gradient).

and allocated RBs, and the achieved Transport Block Size (TBS) for each in-

terval (e.g., 1s). Using this, we monitor UE i’s spectral e�ciency by

Ri = (1 ≠ OH) · (TBS/NRB,i) · (1/(1 + ‘)), (5.3)
where NRB,i is the number of allocated RBs and TBS is the PHY layer Trans-

port Block Size. OH is the physical channel overhead (3GPP TS 38.306 [35]

models it as 0.08 for UL in frequency range FR1). ‘ is the transport to physical

layer protocol overhead: 0.068 for 5G networks [171].

5.5.2.2 Compute Availability Monitor

In our deployment model, there is a single, dedicated edge server for inference

serving with fixed compute (GPU) availability, simplifying compute availability

monitoring. However, GPU utilization must be monitored on the fly in future

scenarios where other competing tasks exist.

5.5.3 Joint Scheduling Knob Controller

Video encoding bitrate can be modeled with three knobs

of RAN monitoring more flexible.

76

Bitrate Ã Frame rate ◊ Resolution ◊ Pixel Quantization (5.4)
where several e�cient knob control methods have been designed (e.g., frame

rate [75,78–82], resolution [40,77,179], pixel quantization [1], or a combination

of all [85]). Similarly, DNN inference latency can be modeled as:

Latency Ã Enhancement + Backbone ◊ Quantization (5.5)
where Enhancement represents the input preprocessing step (e.g., super-resolution)

to improve frame quality before inference, Quantization is applied to the DNN

weights (e.g., float16, int8) to reduce computation, and Backbone refers to the

feature extractor of a DNN, which is characterized by the DNN architecture

(e.g., number of layers and channels).

While joint scheduling is not limited to specific knobs, we choose (pixel

quantization, backbone) due to two reasons. First, pixel quantization controls

the bitrate without a�ecting the compute stage (e.g., adapting frame rate or

resolution unexpectedly changes DNN inference latency or the number of in-

ference jobs). We control Quantization Parameter (QP) commonly exposed

in video codecs (e.g., H.264/265). Second, DNNs for various tasks commonly

support diverse backbones with wide accuracy-latency tradeo�s (e.g., ResNet-

18/50/101/152 or E�cientNet-B0 to B7) [2,33,108,148,180]. We also show the

e�ectiveness of joint scheduling with other knob choices in Chapter 5.7.3.

5.6 Joint Scheduling Algorithm

So far, we have described how Pendulum collects the necessary information for

joint scheduling and how to apply a scheduling decision. We now describe how

Pendulum e�ectively solves the scheduling problem in Chapter 5.3.4 for the

given information.

Figure 5.16 motivates the importance of good joint scheduling. Suppose

two users (with di�erent Pareto-optimal resource demand curves) using the

77

(a) User A’s demand curve. (b) User B’s demand curve.

Figure 5.16: Bandwidth required to compensate �t inference latency di�ers

depending on the demand curve.

configs marked as yellow stars. When a compute bottleneck occurs, the total

inference latency should be reduced by �t. Reducing user B’s backbone requires

a significantly larger bitrate increase for accuracy compensation than adjusting

user A’s, likely resulting in ine�cient overall solutions. However, such scheduling

is challenging due to the large search space; it involves exploring O(MN) options

for N users (e.g., 10s-100s), each with a large number of M configs (e.g., 49

for 7◊7 bitrate and backbones). This scheduling falls into a multi-dimensional

knapsack problem, which is NP-hard.

To make the problem tractable, we design an iterative max-cost gradient

algorithm that (1) finds user-wise cost-optimal configs (from the demand curves

profiled by the demand profiler in Chapter 5.5.1) and (2) incrementally adjusts

the allocation until bottleneck resolves. This heuristic e�ciently finds near-

optimal solutions in a reduced O(MN) search space.

Algorithm 2 describes the algorithm. The scheduler takes the most recent

profiled accuracy-satisfying demand curve {Ci,j} for each user i along with

the resource budgets Bnetwork and Bcompute as input, and outputs the cost-

minimizing resource allocation S. First, it finds user-wise cost-optimal configs

(lines 1–2). Then, it checks if the selected configs exceed the resource budgets. If

a bottleneck is detected (line 2), it iteratively adjusts the config of the user with

78

Algorithm 2 Iterative Max Cost Gradient Algorithm
Inputs: Accuracy-satisfying configs Ci = {(bi,j , ti.j)} for users 1, ..., N , resource budgets

Bnetwork, Bcompute.

Output: Cost-minimizing resource allocation S = {j1, ..., jN }

1: S Ω {0, ..., 0} i in 1, ..., N

2: S[i] Ω GetCostOptimalConfig(Ci)

DetectBottleneck(S, Bnetwork, Bcompute) == true

3: j Ω F indMaxCostGradientUser(C, S)

4: S[j] Ω AdjustConfigByStep(C[j], S[j])

5: return S

maximum cost gradient by a step until the bottleneck is resolved (lines 3–4).

The cost gradient is defined as how much the resource cost of the bottleneck

stage can be reduced by increasing the resource cost of the non-bottleneck

stage. For example, if the network becomes a bottleneck, user i (with currently

selected config j)’s cost gradient CGi is

CGi =

CostNetwork (bi,j+1 ≠ bi,j)
CostCompute (ti,j+1 ≠ ti,j)

----- , (5.6)

assuming {(bi,j , ti,j)} is sorted ascending order of t.

Figure 5.15 shows an example for three users. Suppose user-wise cost-optimal

configs are black crosses. If the bitrate sum exceeds the network budget, the

algorithm first reduces user 2’s bitrate, which has the highest cost gradient (1.8)

(Iter #1). Then, it selects user 1 who has the largest cost gradient (Iter #2).

The process is repeated until the bottleneck is resolved.

Exception handling. Pendulum may not be able to find feasible solutions

in two cases. The first is when a user has no accuracy-satisfying config under

resource budget. In such a case, we reduce the bottlenecked resource (for real-

time processing) and increase the usage of the remaining stages to maximum

(for best-e�ort accuracy). The second is when both stages are bottlenecked

(happens very rarely as analyzed in Chapter 2.2.3). In such a case, Pendulum

reports the user (video analytics system operator) achievable accuracy under

79

current resources for further action (e.g., lower the accuracy requirement or

secure more resources).

5.7 Evaluation

Implementation. We implement the demand profiler and joint resource sched-

uler in the application layer in C++. Network bandwidth estimator is imple-

mented in C++ using FlexRIC [174] (O-RAN’s E2 [175]-compliant RIC SDK)

for communication between base station and edge server. We currently run the

base station and the DNN inference engine in the same server, and thus, the

RIC communication delay is negligible, whereas, in practical MEC scenarios, we

expect ¥1-10 ms delay [4,174], which is still tolerable considering the scheduling

interval (e.g., 2s). To stream videos from UEs, we use H.264 in FFmpeg [181]

4.1.9 for video encoding and secure reliable transport (SRT) [182] for trans-

mission. To run video analytics on the server, we use TensorFlow 2.6.2 C API

+ CppFlow [183] and PyTorch 1.10.1 [184] C++ API for DNN models and

OpenCV 4.4.0 [185] for image processing.

Testbed setup. We evaluate Pendulum on a 5G RAN-enabled edge testbed

(Figure 5.18). It consists of a commodity server equipped with Intel Xeon Gold

5128 CPU and 8◊ RTX 2080 Ti GPUs, where we run the OpenAirInterface

(OAI)-5G RAN software [152] and video analytics applications. As an RF fron-

tend, we use USRP X310 (TDD n78 band with 5DDDSU and single MIMO

layer following [36,186]) connected to the server. For UEs, we use Google Pixel

6 smartphones with programmable SIM cards (sysmoISIM-SJA2) [153]. We

emulate the network bandwidth changes by controlling the MCS. As the RAN

stack has stability issues, including hardware compatibility and UE connection

failures (similar reported in [4]), for larger-scale experiments, we use emulated

UEs running in a desktop machine and use OAI-5G RF simulator [187] and

80

Table 5.1: Evaluation datasets.

Camera Content Scene Change # Videos

MOT [34] CCTV, Handheld Streets Moderate 5

BDD [157] Dashcam City road Fast 6

Game
(self-collected) Dashcam

Racing
game Very fast 10

Linux tc [154] to emulate network bottleneck. To emulate a compute bottle-

neck, we linearly increase the DNN inference latency by injecting delay after

inference [14].

Datasets. We use three datasets with di�erent scene change speeds (Table 5.1):

five 30fps videos (02, 04, 09, 10, 11) for MOT [34] (moderate), 6 videos from

BDD [157] (fast), and self-collected racing game videos (Games) from YouTube

(very fast). All videos are scaled to 720p. For videos without ground truth

labels, we use golden config (heaviest backbone, highest bitrate) outputs. We

observe consistent results across datasets and report the results on BDD unless

specified.

Tasks and DNNs. We use two tasks: object detection and semantic seg-

mentation. For detection, we use YOLOv5 [33] with 5 backbones (n/s/m/l/x),

and E�cientDet with 7 backbones (D0-D6) [108]. For segmentation, we train

FPN [168] with 7 E�cientNet backbones (B0-B6) [148] on BDD [157]. Unless

stated otherwise, we report performance using E�cientDet.

Single-stage baselines: Static uses a fixed (bitrate, backbone). DDS [87]

uses two-path streaming (low-quality probe frame + high-quality feedback for

regions with low-confidence inference results). EAAR [1] uses dynamic RoI

encoding (high quality only for regions where objects existed in the previous

frame) and motion vector-based frame filtering. Reducto [78] uses pixel/edge/area

feature di�erence-based frame filtering (feature type is o�ine profiled per each

task). Backbone Adaptation (BA) only adapts the DNN backbone (based

on our profiler in Chapter 5.5) and uses a fixed bitrate. This is equivalent to

81

(a) MOT (moderate speed) (b) BDD (fast speed) (c) Game (very fast speed)

Figure 5.17: Throughput-accuracy comparison in network bottleneck scenario.

Figure 5.18:

Testbed imple-

mentation.

Figure 5.19: Over-the-air per-

formance.

Figure 5.20: Frame-wise la-

tency comparison.

single-knob Chameleon [40].

Multi-stage baseline: Pendulum-Decoupled is a network-compute-decoupled

joint scheduler. When the network becomes a bottleneck, all users reduce their

bitrates by the same amount until the bottleneck is resolved. Then, the server

compensates for the accuracy drop by choosing the cost-optimal backbones that

satisfy their accuracy requirements.

5.7.1 End-to-End Improvement

Throughput-accuracy. Figure 5.17 compares the throughput-accuracy of Pen-

dulum against baselines across three datasets. Ellipses show the 1-‡ range of the

results. We throttle the network bandwidth from 20 to 3 Mbps after 4 seconds

after the streaming start. Static, which uses a fixed (4 Mbps, E�cientDet-D1),

su�ers from throughput drops due to network bottlenecks. Overall, Pendulum

consistently achieves ¥30 fps throughput and higher accuracy compared to

the baselines: up to 0.64 mIoU gain (Game, Pendulum: 0.81 vs. EAAR: 0.17).

82

(a) DDS vs. DDS-joint, BDD (b) EAAR vs. EAAR-joint, BDD

Figure 5.21: Joint scheduling on state-of-the-art systems.

The performance of the baselines varies depending on the dataset. For MOT

(moderate scene changes), all baselines e�ectively optimize the bitrate to below

3 Mbps (e.g., EAAR: 2.98 Mbps), achieving comparable accuracy to Pendu-

lum. However, for BDD and Game with faster scene changes, the accuracy

drops significantly, especially for EAAR and DDS. For EAAR, the object re-

gion from the previous frame becomes highly stable. For DDS, fast-changing

video encoded in a low-bitrate probe stream (e.g., 1 Mbps) su�ers from severe

quality degradation, resulting in inaccurate DNN inference and feedback frame

requests. Consequently, both end up streaming the entire frame at low quality.

Pendulum achieves higher mIoU even when DDS and EAAR use the heaviest

D6 backbone (e.g., 0.71 vs. 0.49, 0.48 in BDD).

Over-the-air performance. Figure 5.19 shows the throughput-accuracy per-

formance in the real physical channels using our USRP RAN implementation.

We observe that Pendulum e�ectively handles network bottlenecks and achieves

high throughput and accuracy compared to baselines.

Frame-wise latency. While achieving high accuracy and throughput, Pen-

dulum also achieves low frame-wise latency. Figure 5.20 shows that Pendulum

yields <100 ms frame-wise latency, much smaller than DDS which involves two

frame transfers and DNN inference per frame.

83

(a) YOLOv5 (detection), MOT (b) FPN (segmentation), BDD

Figure 5.22: Performance across various tasks & DNNs.

5.7.2 Joint Scheduling on SOTA Systems

We next demonstrate that joint scheduling can be generally integrated into

prior state-of-the-art systems. For example, DDS [87] controls two bitrates at

which the probe and feedback streams are encoded (e.g., 2 and 6 Mbps). In

case of the network bottleneck, along with adjusting the two bitrates (e.g., to 1

and 3 Mbps), DDS-Joint increases the DNN backbone from E�cientDet-D1 to

D6 (increment can be optimized by profiling). Figure 5.21(a) and (b) show the

results on the BDD dataset. Joint scheduling achieves 0.17 and 0.20 higher mIoU

than baseline DDS and EAAR, respectively, demonstrating its generalizability.

5.7.3 Performance on Various App Settings

Various DNNs. We repeat the same experiment as in Figure 5.17(a), but with

YOLOv5 detector backbones. We see a similar trend: Pendulum achieves 0.17,

0.32, and 0.52 higher mIoU than Reducto, EAAR, and DDS, respectively. Note

that DDS’s mIoU is lower than when using the E�cientDet backbones because

the lightweight YOLOv5 backbone yields less accurate feedback regions on low-

bitrate videos.

Various tasks. Figure 5.22(b) also shows that Pendulum achieves similar per-

formance for FPN segmentation models (e.g., ¥30 fps throughput with 0.19

higher mIoU than Reducto).

84

Figure 5.23: Performance for

(res, backbone) knobs.

Figure 5.24: Performance in

compute bottleneck.

Other scheduling knobs. Figure 5.23 shows the performance of Pendulum

with (resolution, backbone) knobs: upon network bottleneck, Pendulum re-

duces the resolution from 720p to 540p, and increases the backbone. Pendulum

achieves both high throughput and accuracy, showing the generality of joint

scheduling with respect to scheduling knobs.

5.7.4 Performance in Compute Bottleneck

Throughput-accuracy. Figure 5.24 shows the performance of Pendulum in

the compute bottleneck scenario on MOT. We increase the inference latency

slowdown factor from 1◊ to 2◊ 4 seconds after the app starts. Static (2 Mbps,

E�cientDet-D6) su�ers from throughput drop. Compared to Reducto and BA

which only reduce the DNN workload (either by reducing the number of frames

or backbone), Pendulum e�ectively increases the bitrate (from 1.98 to 5.42 Mbps)

resulting in 0.12 higher mIoU and 1.29◊ higher throughput.

Operation timeline. Figure 5.25 shows an example operation timeline of Pen-

dulum in compute bottleneck scenario for a BDD video. Figure 5.25(a) shows

the bitrate and backbone over time. At the start, Pendulum uses (2 Mbps,

E�cientDet-D6) config; bitrate peaks every 2 seconds due to periodic high-

bitrate frames for profiling. After 4s when compute bottleneck occurs, Pendu-

lum reduces the backbone to D1 and increases the bitrate to 8 Mbps (according

85

(a) Bitrate and backbone. (b) Throughput and mIoU.

Figure 5.25: Operation timeline when the compute

becomes a bottleneck.

Figure 5.26: Demand

profiler performance

breakdown.

Figure 5.27: Performance under band-

width fluctuation.
Figure 5.28: Impact of profiling inter-

val on accuracy.

to the profiling results). Figure 5.25(b) shows the throughput and mIoU in the

same timeline. Pendulum shortly su�ers from throughput drop when a bottle-

neck occurs but quickly recovers from it while retaining the same accuracy using

the D6 backbone.

5.7.5 Microbenchmarks

5.7.5.1 Robustness Under Bandwidth Fluctuation

Figure 5.27 shows the performance of Reducto and Pendulum under bandwidth

fluctuation scenarios. For real-time throughput, both systems conservatively

reduce the bitrate to minimum observed bandwidth to avoid sudden through-

put drop. While Reducto’s accuracy quickly drops as bottleneck becomes more

severe, Pendulum robustly retains the accuracy by increasing the backbone.

86

Figure 5.29: Performance of accuracy

modeling.

Figure 5.30: Multi-user scheduling perfor-

mance.

5.7.5.2 Network-Compute Demand Profiler

Performance breakdown. Figure 5.26 shows the performance breakdown

regarding profiling overhead and mIoU. Profiling overhead (%) is the ratio be-

tween the total sum of DNN inference latencies for profiling and serving. We

use 5 YOLOv5 backbones (n/s/m/l/x) and 4 bitrates (1, 2, 4, 8 Mbps); a full

search over all configs takes 1s. Fixed interval, full search profiling on 2 frames

per every 2s window incurs 24.9% overhead. Scene change-based dynamic pro-

filing reduces the overhead to 8.8%. Finally, leveraging the knob independence

(which reduces the number of searches to 8), reduces the overhead to 1.5%

(93.9% smaller than the fixed-interval, full search) with negligible mIoU drop.

Impact of profiling interval. Figure 5.28 shows the impact of profiling in-

terval on serving accuracy and overhead. It shows the necessity of dynamic

profiling: triggering the profiling intermittently at every 12s reduces overhead

by 18% compared to 2s without accuracy drop. Our scene change detector ac-

curately triggers profiling at every 9.09s on average.

Weighted multi-knob accuracy interpolation. Figure 5.29 shows the ef-

fectiveness of accuracy modeling: when profiling 4◊7 configs (1,2,4,8 Mbps and

E�cientDet D0-D6) on BDD, our profiler reduces the overhead by 79% and

40% compared to full search and Chameleon [40] without accuracy drop.

87

5.7.5.3 Iterative max-cost gradient scheduler

Figure 5.30 compares the performance of various schedulers. We assume 10 users

with randomly sampled demand curves from MOT and BDD datasets (each

with 4-6 Pareto-optimal configs, bitrate range in [1,10] Mbps, and E�cientDet-

D0-D6 backbones). We assume a network bottleneck scenario, where the total

bitrate sum should not exceed 20 Mbps. We model cost functions as linear as-

suming linear billing models [188,189], with unit network and compute costs are

set as $0.36 and $0.74 (Chapter 5.3.1). Per-User Optimal chooses user-wise cost-

optimal configs independently, resulting in severe network bottleneck. While

achieving the same app accuracy requirement, our Iterative Max Cost Gradient

algorithm achieves comparable performance compared to the full search opti-

mal solution, with only 0.004% searches. It also reduces the total cost by 25%

compared to Pendulum-Decoupled: this is because Decoupled reduces the

bitrate of users with low-cost gradients (i.e., require large inference latency in-

crease for accuracy compensation), whereas Pendulum e�ciently chooses users

with high-cost gradients.

88

Chapter 6

Heimdall: Mobile GPU Coordination Platform

for AR Applications

6.1 Introduction

In this Chapter, we design Heimdall, a mobile GPU coordination platform to

support concurrent multi-DNN and rendering tasks for AR apps. Heimdall newly

designs and implements a Pseudo-Preemptive mobile GPU coordinator to en-

able highly flexible coordination among multi-DNN and rendering tasks. Heim-

dall is distinguished from prior work in that i) it coordinates latency-sensitive

foreground rendering tasks along with background DNN tasks to achieve sta-

ble rendering performance of ¥30 fps, and ii) it addresses resource contention

among multiple DNNs to meet their latency requirements.

Designing Heimdall involves the following challenges:

• Multi-DNN GPU contention. Compared to prior mobile deep learn-

ing frameworks [18, 20, 37, 38] that have mostly been designed for running a

single DNN, emerging AR apps require concurrent multi-DNN execution (Chap-

ter 2.1.2). Not only are the individual state-of-the-art DNNs very complex to

run in real-time (Chapter 2.2.1), running multiple DNNs concurrently incurs

89

severe contention over limited mobile GPU resources, degrading overall per-

formance. For example, our study shows that running 3 to 4 di�erent DNNs

commonly required in AR apps (e.g., object detection, image segmentation,

hand tracking) concurrently on Google TensorFlow-Lite (TF-Lite) [37] and

Xiaomi MACE [38] over high-end Adreno 640 GPU incurs as high as 19.7◊

slowdown (Chapter 2.2.4). Although several recent studies aimed at running

multiple DNNs concurrently on mobile [7, 16, 56], they have mostly focused

on memory optimization [16, 56] or cloud o�oading [7]; multi-DNN GPU con-

tention remains unsolved.

• Rendering-DNN GPU contention. More importantly, prior works

only consider a DNN running in an isolated environment where no other task

is contending over the GPU. When running rendering in parallel with DNNs,

GPU contention degrades and fluctuates the frame rate, degrading user experi-

ence (e.g., drops from 30 to 11.99 fps when 4 DNNs run in background (Chap-

ter 2.2.4)).

There have been studies to schedule concurrent tasks on desktop/server

GPUs [59–61,68,69,71,190,191], either with parallel execution by dividing GPU

cores (e.g., using NVIDIA Hyper-Q [62]) with hardware architectural support,

or with time-sharing through preemption (e.g., using CUDA stream prioritiza-

tion). However, mobile GPUs do not provide architectural support for parallel

execution, while fine-grained preemption is not easy as well due to high con-

text switch costs caused by large state size and limited memory bandwidth

(Chapter 6.3.1). Even with architecture evolution, the need for an app-aware

coordinator to dynamically prioritize and allocate resources between multiple

DNNs persists (Chapter 7.2.3). We can also consider cloud o�oading, but it is

not trivial to employ it in outdoor scenarios where network latency is unstable.

To tackle the challenges, we design a Pseudo-Preemption mechanism to

support flexible scheduling of concurrent multi-DNN and rendering tasks on

90

mobile GPU. We take the time-sharing approach as a baseline, and enable

context switches only when a semantic unit of the DNN or rendering task is

complete. This does not incur additional memory access cost, which is the core

di�culty in applying conventional preemption (triggered by periodic hardware

interrupt regardless of the app context) for mobile GPUs. Accordingly, it allows

the multi-DNN and rendering tasks to time-share the GPU at a fine-grained

scale with minimal scheduling overhead. With this new capability, we flexibly

prioritize and run the tasks on the GPU to meet the latency requirements of

the AR app. Our approach can also be useful for the emerging neural proces-

sors (e.g., NPUs or TPUs), as preempting hard-wired matrix multiplications is

complicated and context switch overhead can be more costly due to larger state

sizes (Chapter 7.2.3).

To implement Pseudo-Preemption mechanism, Heimdall incorporates the fol-

lowing components:

• Preemption-enabling DNN analyzer. The key in realizing Pseudo-

Preemption is breaking down the bulky DNNs into small schedulable units.

Our Preemption-Enabling DNN Analyzer measures the execution times of DNN

and rendering tasks on the target mobile device and partitions the DNNs into

the units of scheduling to enable fine-grained GPU time-sharing with minimal

scheduling overhead. We notice that the execution time of individual DNN

operator (op) is su�ciently small (e.g., <5 ms for 89.8% of ops). Exploiting

this, the analyzer groups several consecutive ops as a scheduling unit which

can fit between the two consecutive rendering events. As rendering latencies

are often very small (e.g., 2.7 ms for rendering a 1080p camera frame), each

task is used as the scheduling unit. Note that existing frameworks run the

entire bulky DNN inference all at once (e.g., Interpreter.Run() in TF-Lite [192],

MaceEngine.Run() in MACE [38]), limiting multi-DNN and rendering tasks to

share the mobile GPU at a very coarse-grained scale.

91

• Pseudo-preemptive GPU coordinator. We design a GPU coordinator

that schedules the DNN and rendering tasks on GPU and CPU. It can employ

various scheduling policies based on multiple factors: profiled latencies, scene

variations, and app/user-specified latency requirements. As the base schedul-

ing policy, the coordinator assigns the top priority to the rendering tasks and

executes them at the target frame rate (e.g., 30 fps) to guarantee the usability

of the app. Between the rendering events, the coordinator decides the priority

between multiple DNNs and determine which chunk of DNN ops (grouped by

the analyzer) to run on the GPU. It also decides whether to o�oad some DNNs

to the CPU in case there is a high level of contention on the GPU. Note that

existing frameworks provide no means to prioritize a certain task over others,

making it di�cult to guarantee performance under contention.

Our major contributions are summarized as follows:

• To our knowledge, this is the first mobile GPU coordination platform for

emerging AR apps that require concurrent multi-DNN and rendering execu-

tion. We believe our platform can be an important cornerstone to support

many emerging AR apps.

• We design a Pseudo-Preemption mechanism to overcome the limitations of

mobile GPUs for supporting concurrency. With the mechanism, Heimdall

enhances the frame rate from ¥12 to ¥30 fps while reducing the worst-

case DNN inference latency by up to ¥15 times compared to the baseline

multi-threading method.

• We implement Heimdall on MACE [38], an OpenCL-based mobile deep learn-

ing framework, and conduct an extensive evaluation with 8 state-of-the-art

DNNs (see Table2.2) and various mobile GPUs (i.e., recent Adreno series)

to verify the e�ectiveness.

92

Algorithm 3 OpenCL-based DNN inference in MACE
1: for Operator in Graph do

2: TargetDevice Ω Operator.GetTargetDevice() TargetDevice == GPU

3: Kernel Ω Operator.GetKernel()

4: clCommandQueue.enqueueNDRangeKernel(Kernel) TargetDevice ==

CPU

5: clCommandQueue.finish()

6: Operator.RunOnCPU()

6.2 Analysis on GPU Contention

The workload of upcoming AR apps is unique in that it runs multiple compute-

intensive DNNs simultaneously while seamlessly rendering the virtual contents.

However, existing mobile deep learning frameworks lack support for multi-DNN

and rendering concurrent execution, and severe GPU contention incurs signifi-

cant performance degradation for both DNN and rendering tasks.

Algorithm 3 shows the OpenCL-based DNN inference flow in MACE.1 Upon

the inference start, the framework executes a series of operators (ops) consti-

tuting the DNN. Per each op, the framework first identifies if it is executed

on GPU or CPU (lines 1–2). A GPU op is executed by enqueueing its kernel

to the command queue to be executed by the GPU driver (lines 2–4). As en-

queueNDRangeKernel() function is an asynchronous call, consecutive GPU ops

are enqueued in short intervals (few µs) and executed in batches by the driver

to enhance GPU utilization. However, when a CPU op is encountered, it can

be executed only after the previously enqueued GPU ops are finished and the

result is available to the CPU via CPU/GPU synchronization (lines 4–6).

Figure 6.1 illustrates an example 3-DNN GPU contention scenario that can

occur in the above inference process. Following conventional mobile deep learn-

ing frameworks, each DNN inference is initiated on separate thread and infer-
1The logic is implemented in SerialNet.Run() function, while TF-Lite is implemented simi-

larly using OpenGL/OpenCL.

93

CPU 1

CPU 2

CPU 3

GPU

CPU
fallback

DNN 1 DNN 2 DNN 3

DNN1
finished

DNN3
finished

DNN2
finished

Time

Figure 6.1: Multi-DNN GPU contention example.

ence engine. Each thread on di�erent CPU cores first runs the input preprocess-

ing and enqueues the DNN inference (a sequence of ops) to the GPU scheduler.

The GPU scheduler processes the ops from multiple threads in FIFO. At this

step the first contention occurs; DNN#1 and #3 cannot access the GPU until

the already running DNN#2 is finished. After DNN#2 finishes, DNN#1 takes

control over the GPU and runs its inference. However, let’s assume that some

ops in DNN#1 are not supported by the GPU backend of the framework and

needs to be executed on the CPU (Table 2.2 shows how frequently this occurs

for di�erent DNNs; more details are in Chapter 6.6.2). In such a case, DNN#1

encounters another contention: even when the CPU op execution is finished, it

cannot access the GPU until the already running DNN#3 finishes. As a result,

the inference latency of DNN#1 is significantly delayed.

The above contention becomes more severe with more number of DNNs

concurrently running. Furthermore, DNNs with more CPU fallback ops su�er

more from contention, as they lose access over the GPU at every CPU op

execution. For example, in Figure 2.4(a), StyleTransfer [25] containing 14 CPU

ops su�ers the most latency overhead compared to other DNNs that contain no

CPU ops.

94

6.3 Heimdall System Overview

6.3.1 Approach

The core challenge in supporting concurrency on mobile GPU lies in the lack of

support for parallelization or preemption. As analyzed in Chapter 6.2, mobile

GPU can run only a single task at a given time, making it hard to provide stable

performance when multiple tasks are running. Existing mobile deep learning

frameworks, however, fail to consider such limitations, and are ill-suited for AR

workloads in two aspects: i) they run the entire bulky DNN inference all at once

(e.g., by Interpreter.Run() in TF-Lite, MaceEngine.Run() in MACE), limiting

multi-DNN and rendering tasks to share the GPU at a very coarse-grained

scale (Table 2.2), and ii) they provide no means to prioritize a certain task over

others, making it challenging to guarantee performance under contention.

6.3.1.1 Why Not Apply Desktop GPU Scheduling?

One possible approach is to implement parallelization or preemption in mobile

GPUs. Although there have been many studies to support multitask scheduling

on desktop/server-grade GPUs [59–61,71,190,191], they are either designed for

CUDA-enabled NVIDIA GPUs (which are unsupported in mobile devices) or

require hardware modifications (e.g., memory hierarchy [67]), making it di�-

cult to apply for commodity mobile GPUs. Also, adopting similar ideas is not

straightforward due to the following limitations of mobile GPUs.

Limited architecture support. Several studies focused on spatially sharing

the GPU to run multiple kernels in parallel, either by partitioning the com-

puting resources [71,190] (e.g., starting from Kepler architecture [193] released

in 2012, NVIDIA GPUs can be parallelized in units of Streaming Multipro-

cessors using Hyper-Q [62]) or fusing parallelizable kernels with compiler tech-

niques [191, 194]. However, such techniques are unsupported in mobile GPUs

95

architecturally at the moment.

Limited memory bandwidth. Other studies aimed at time-sharing the GPU

by fine-grained context switching [59–61], as well as enabling high-priority tasks

to preempt the GPU even when others are running [71] (e.g., by using CUDA

stream prioritization). However, frequent context switching incurs high memory

overhead due to large state size, which is burdensome for mobile GPUs with

limited memory bandwidth. For example, ARM Mali-G76 GPU in Samsung

Galaxy S10 (Exynos 9820) has 26.82 GB/s memory bandwidth shared with

the CPU, which is 23◊ smaller than that of NVIDIA RTX 2080Ti (i.e., 616

GB/s). Each context switch requires 120 MB memory transfer (=20 cores◊24

execution lanes/core◊64 registers/lane◊32 bits), which incurs at least 4.36 ms

latency even when assuming the GPU fully utilizes the shared memory band-

width. While recent Qualcomm GPUs (Adreno 630 and above) support pre-

emption [195] (which can be utilized by setting di�erent context priorities in

OpenCL), we observed that each context switch (both between rendering–DNN

and DNN–DNN) incurs 2–3 ms overhead on LG V50 with Adreno 640 GPU,

aside from the fact that the priority scheduling is possible only at a coarse-

grained scale (i.e., low, medium, and high). Such memory overhead would

be burdensome in the multi-DNN and rendering AR workload, where context

switch should occur at a 30 fps (or higher) scale.

6.3.1.2 Our Approach: Pseudo-Preemption

To tackle the challenges, we design a Pseudo-Preemption mechanism to coor-

dinate multi-DNN and rendering tasks. As parallelization is unsupported in

mobile GPUs, we take the time-sharing approach as a baseline. To mimic the

e�ect of preemption while avoiding the burdensome context switch memory

overhead, we divide the DNN and rendering tasks into smaller chunks (i.e.,

scheduling units) and switch between them only when each task chunk is fin-

96

ished, enabling multi-DNN and rendering tasks to time-share the GPU at a

fine-grained scale. A possible downside of our approach is that fragmenting

the GPU tasks may incur latency overhead, as the GPU driver would lose the

chance to batch more tasks to enhance GPU utilization. However, such over-

head can be minimized as we can flexibly adjust the scheduling unit size to

balance time-sharing granularity and latency overhead (e.g., 89.8% of the DNN

ops run within 5 ms, and rendering latencies are typically small).

6.3.2 Design Considerations

Commodity mobile device support. Our goal is to support a wide range

of commodity mobile devices by requiring no modification to existing hardware

or GPU drivers. We focus on using mobile GPU and CPU in this work, and

plan to add NPU/TPU support when the hardware and APIs are more widely

supported. We also leave cloud/edge o�oading out of our scope, as it introduces

latency issues in outdoor mobile scenarios.

Guarantee stable rendering performance. Our main goal is to enable

seamless rendering even in the presence of multi-DNN execution. We aim to

minimize the frame rate drop and fluctuation due to GPU contention, which

harms the user experience.

Coordinate Multi-DNN execution. While guaranteeing seamless render-

ing, we aim to coordinate multiple DNNs to satisfy the app requirements with

minimal inference latency overhead.

No loss of model accuracy. Our goal is to incur no accuracy loss for each

DNN inference. We leave runtime model adaptation for latency-accuracy trade-

o� (e.g., via pruning [56]) to future work.

Transparency. Finally, we aim to design a system that minimizes the extra

e�orts required for the app developers to use our platform.

97

Application Profile
Rendering

requirements
DNN

requirements
Main Thread

Camera
Manager

UI
Manager

Display
Manager

Task Thread Pool
Rendering DNN #1 DNN #N…

DNN Partitioning
Latency Profiling

GPU Coordination CPU Offloading

Pseudo-Preemptive
GPU Coordinator

Preemption
-Enabling

DNN Analyzer

Processors
GPU Multi-Core CPU

Figure 6.2: System Architecture of Heimdall.

6.3.3 System Architecture

Figure 6.2 depicts the overall architecture of Heimdall. Heimdall is located on

the framework layer to determine the scheduling units of the DNNs provided by

the application, and coordinate their execution based on app-specified priorities

and deadlines. It does not require any fix on the OS GPU scheduler. Given the

app profile (rendering frame rate and resolution, DNNs to run and latency

constraints), Preemption-Enabling DNN Analyzer first profiles the information

necessary to determine the scheduling units to enable the Pseudo-Preemption

mechanism. First, it profiles the rendering and DNN inference latencies on the

target AR device to determine how much time the DNNs can occupy the GPU

between the rendering events (Chapter 6.4.2). Second, it partitions the DNNs

into chunks (scheduling unit) that can fit between the rendering events with

minimal inference latency overhead (Chapter 6.4.3).

At runtime, Pseudo-Preemptive GPU Coordinator takes multi-DNN and

rendering tasks from the main thread (that controls the camera, UI, and dis-

play), and coordinates their execution to satisfy the app requirements. Specif-

ically, it first defines a utility function to compare which DNN is more impor-

tant to run at a given time based on the inference latency and scene contents

98

(Chapter 6.5.2), and coordinates their execution on GPU, as well as dynamically

o�oad some DNNs to the CPU to reduce the GPU contention (Chapter 6.5.3).

6.4 Preemption-Enabling DNN Analyzer

6.4.1 Overview

What should we analyze? The goals of the analyzer are i) profile rendering

and DNN inference latencies on the target device (which varies depending on

the mobile SoC and GPU) to let the coordinator get a grasp on how it can

dynamically schedule their execution, and ii) partition the bulky DNNs into

chunks (i.e., the units of scheduling), to enable fine-grained GPU coordination

and guarantee rendering performance.

Static profiling vs. dynamic profiling? The app requires to run multi-DNN,

rendering, and other tasks (e.g., pre/postprocessing for the DNN inference, cam-

era) simultaneously, which may fluctuate the execution times of each task at

runtime. However, as mobile GPUs do not support preemption (i.e., a task can-

not be interrupted once started), the execution times on GPU remain stable

regardless of the presence of other tasks. Thus, o�ine profiling and DNN par-

titioning approach is feasible for GPU. However, the execution times of DNNs

on CPUs may fluctuate due to resource contention; Figure 6.3 shows that the

inference times on CPU increase and fluctuate when the camera is running in

background. Thus, CPU execution times need to be continuously tracked at

runtime.

How fine should we partition the DNNs? Inference times of DNNs typi-

cally exceed multiple rendering intervals as shown in Table 2.2. At the op-level,

however, the execution times remain small enough, making fine-grained parti-

tioning feasible to fit in between the rendering events. For example, for the 7

DNNs in Table 2.2 whose inference latencies are over 33 ms, Figure 6.4 shows

99

 0

 1

 2

YOLO-v2

RetinaFace

ArcFace

DeepLab-v3

StyleTransfer

EAST

In
fe

re
n

c
e
 t

im
e
 (

s
)

GPU(isolated)
GPU(w/ camera)

CPU(isolated)
CPU(w/ camera)

Figure 6.3: DNN inference latency

with and without camera.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Latency (ms)

YOLO-v2
RetinaFace
ArcFace
DeepLab-v3
Style
EAST
PoseNet

Figure 6.4: Operator-level latency dis-

tribution.

 0

 5

 10

 15

720p 1080p 2160pR
e

n
d

e
ri

n
g

 l
a

te
n

c
y

 (
m

s
)

lock()
memcpy()
unlockAndPost()

Figure 6.5: Camera frame rendering

latency.

 0
 1
 2
 3
 4
 5
 6

YOLO-v2

RetinaFace

ArcFace

DeepLab-v3

StyleTransfer

EAST

In
fe

re
n

c
e
 t

im
e
 (

s
)

GPU
CPU(BIG)

CPU(LITTLE)

Figure 6.6: Example DNN latency

profiling result on Google Pixel 3 XL.

that on average 89.8% of the ops run within 5 ms on Google Pixel 3 XL.

Therefore, it su�ces to partition the DNNs at the op-level and not below (e.g.,

convolution filter-level). However, note that dividing the DNN too finely also

has its downside: it incurs higher latency overhead as the GPU driver loses the

chance to batch more consecutive ops to enhance GPU utilization.

6.4.2 Latency Profiling

Rendering latency. Given the target rendering frame rate (f) and input

video resolution, the analyzer first measures the rendering latency, Trender. This

determines how much time the DNNs can occupy the GPU between rendering

events (i.e., 1
f

≠ Trender). For example, rendering 1080p frames on Adreno 640

GPU in LG V50 takes 2.7 ms (Figure 6.5), leaving 30.6 ms for DNNs when the

frame rate is 30 fps.

DNN latency. Secondly, the analyzer measures the DNN inference latencies

100

Rendering interval !" ms

DNN
model layers

!
" - #$%&'%$

()=1
Partition

index (! (* (+ (,=N

GPU Time

Rendering latency #$%&'%$ ms

Figure 6.7: Operation of DNN parti-

tioning.

 0
 100
 200
 300
 400
 500

YOLO-v2

RetinaFace

ArcFace

DeepLab-v3

StyleTransfer

EASTIn
fe

re
n

c
e
 t

im
e
 (

m
s
)

1 3 5 10 Full

Figure 6.8: DNN inference latencies

for varying partition sizes.

on the target GPU and CPU. Figure 6.6 shows an example of the profiled results

on di�erent processors (i.e., the GPU and CPU cores in the ARM big.LITTLE

architecture) in LG V50.2 The analyzer also measures the inference latencies

of DNNs running on CPU at runtime to track variations due to CPU resource

contention.

6.4.3 DNN Partitioning

Basic operation. Figure 6.7 shows the operation of DNN partitioning. Given

a DNN D composed of N ops, let T (Di,j) denote the execution time of a

subgraph from i-th to j-th op. Our goal is to determine a set of K indices

{p1 = 1, p2, p3, ..., pK = N} that partition the DNN in a way such that each

partition execution time lies within the rendering interval,

T (Dpi,pi+1) Æ 1
f

≠ Trender 1 Æ i Æ K ≠ 1. (6.1)

Although there are multiple solutions that satisfy the constraints, dividing the

model too finely (e.g., running only one or two ops at a time) incurs higher

scheduling overhead, as the GPU driver loses the chance to batch more consec-

utive ops to enhance GPU utilization: Figure 6.8 shows that executing only a

single op at a time incurs 13 to 70% latency overhead compared to running the
2We currently assume that each DNN uses only a single CPU core, and leave multi-core

CPU execution to future work.

101

entire model at once. Thus, the analyzer minimizes K by grouping as many con-

secutive ops as possible without exceeding the rendering interval. This is done

as follows: i) starting from the first op of the model, incrementally increase the

op index i until the latency of executing op 1 to i exceeds the rendering interval,

ii) group op 1 to i ≠ 1 as the first partition, and iii) start from op i and repeat

the process until reaching the final op.

Relaxation. The main drawback of our approach is that undesirable GPU

idle time occurs when a partition execution time is shorter than the rendering

interval (especially at the end of the model where there are not enough ops

left). To alleviate the issue, we relax the constraint in Equation (6.1) and allow

the partition execution time to exceed the rendering interval by a small margin

(e.g., 5 ms), so that more ops can be packed to maximize GPU utilization.

6.5 Pseudo-Preemptive GPU Coordinator

6.5.1 Overview

Where does the coordinator operate? The coordinator should take into

account the rendering and DNN requirements of the app, and coordinate their

execution (in the units of scheduling determined by the analyzer) considering

the task priorities. With this requirement, we embed the coordinator in app-

level deep learning framework, rather than the OS or the device driver layer

where the workloads are highly abstracted.

Operational flow. The coordinator assigns the top priority to the rendering

task and executes it at the target frame rate. We take this design decision as

degradation or fluctuation in the rendering frame rate immediately a�ects the

usability of AR apps. It is possible to change the scheduling policy to make

rendering and DNN tasks to have the same priority in case rendering is less

important.

102

The coordinator takes in the DNN inference requests from the main thread

via admission control, so that the inference of a DNN is enqueued only after

its previous inference has finished. When a DNN inference is enqueued, the

latest camera frame is fed as input after either resizing it to the model input

size or cropping the sub-region depending on the task. The scheduling event

is triggered after every rendering event to decide the priority between DNNs

and determine which DNN chunk (partitioned by the analyzer) to run on the

GPU until the next rendering event. To achieve the goal, we define a utility

function that characterizes the priority of a DNN and formulate a scheduling

problem that enables fine-grained GPU time-sharing between multiple DNNs

to satisfy the app requirements. It also decides whether to o�oad some DNNs

to the CPU in case the GPU contention level is too high.

6.5.2 Utility Function

To schedule multiple DNNs, we need a formal way to compare which DNN is

more important to run at a given time. For this purpose, we define a utility

function for each DNN. The utility of a DNN Di whose k-th inference is en-

queued by the main thread at ti

start,k
is modeled as a weighted sum of the two

terms,

UDi(t) = LDi(t, ti

start,k) + – · CDi(ti

start,k, ti

start,k≠1), (6.2)
where L(t, tstart) is the latency utility that measures the freshness of the infer-

ence, CDi(ti

start,k
, ti

start,k≠1) is the content variation utility that captures how

rapidly the scene content has changed from the last DNN inference, and – is

the scaling factor (empirically set as 0.01 in our current implementation).

6.5.2.1 Latency Utility

The latency utility of the DNN Di is calculated as,

LDi(t, ti

start,k) = L0
Di

≠
1
—i · (t ≠ ti

start,k)“i

22
. (6.3)

103

The latency utility is modeled as a concave function so that it decreases more

rapidly over time to prevent the coordinator from delaying the execution too

long. Three parameters can be configured to set the priorities between DNNs.

—i controls the proportion of the GPU time each DNN can occupy (e.g., setting

—i to 1 for all DNNs will enable equal sharing). L0
Di

and “i controls the priority

among DNNs; a DNN with higher L0
Di

and “i will have higher initial utility

but decrease more rapidly, so that the coordinator can allow it to preempt the

GPU more frequently before its utility drops.

6.5.2.2 Content Variation Utility

The content variation utility Di is computed as the di�erence between the input

frames of the consecutive inferences at ti

start,k
and ti

start,k≠1. Normally, this can

be done by calculating the structural similarity (SSIM) [196] between the two

frames. However, this is infeasible in mobile devices due to high computational

complexity. Alternatively, we take the approach in [197] and compute the dif-

ference between the Y values (luminance) Y k of the two frames (which has a

high correlation with the SSIM and requires only O(N) computations),

CDi(ti

start,k, ti

start,k≠1) =
Hÿ

h=1

Wÿ

w=1
|Y k

h,w ≠ Y k≠1
h,w

|, (6.4)

where H, W is the height and width of the frame.

6.5.3 Scheduling Problem and Policy

Given the DNNs and their utilities, the coordinator schedules their execution

to maximize the overall performance (defined as a policy). Specifically, the

coordinator operates in a two-step manner: i) schedule DNNs to e�ciently share

the GPU, and ii) determine whether to o�oad some DNNs to the CPU to resolve

contention.

104

6.5.3.1 GPU Coordination Policy

Among many possible policies, we define two common GPU coordination poli-

cies, following a similar approach in [56]. Assume that N DNNs D1, ..., DN are

running on GPU, with latency constraints t1,max, ..., tM,max (which are set ap-

propriately depending on the app scenario). The two policies are formulated as

follows.

MaxMinUtility policy tries to maximize the utility of a DNN that is currently

experiencing the lowest utility. This is done by solving,

min
i

UDi (t) .

s.t. ti

end,k
≠ ti

start,k
Æ ti,max

(6.5)

Under the MaxMinUtility policy, the coordinator tries to fairly allocate GPU

resources to balance performance across multiple DNNs. We expect this policy

to be useful in AR apps mostly consisted of continuously executed DNNs that

need to share the GPU fairly (e.g., augmented interactive workspace scenario

in Table 2.1).

MaxTotalUtility policy tries to maximize the overall sum of utilities of the

DNNs. This is done by solving,

max
i

q
N

t=1 UDi(t).

s.t. ti

end,k
≠ ti

start,k
Æ ti,max

(6.6)

Under the MaxTotalUtility policy, the coordinator favors a DNN with higher

utility (i.e., allow it to preempt the GPU more frequently) and runs the remain-

ing DNNs at the minimum without violating their deadline. This policy will be

useful in case an AR app requires to run high-priority event-driven DNNs at

low response time (e.g., immersive online shopping scenario in Table 2.1).

105

6.5.3.2 Opportunistic CPU O�oading

As the app runs more DNNs in parallel, the computational complexity may

exceed the mobile GPU capabilities. In such a case, GPU contention would

degrade the overall utilities of the DNNs, possibly making it impossible to

satisfy the app requirements. The coordinator periodically determines if some

DNNs should be o�oaded to the CPU to reduce the GPU contention level.

Let P1, P2, ..., PN denote the processor (GPU or CPU) the N DNNs are run-

ning on. The processor mapping is determined by solving the following problem,

max
P1,P2,...,PN

q
N

t=1 UDi,Pi(t), (6.7)

where UDi,Pi(t) denotes the utility of Di running on processor Pi (a�ected by

the inference time on Pi, which is profiled by the analyzer). As changing the

target processor (i.e., allocating memory for the model weights and feature

maps) incurs around 50 ms latency in MACE, we reconfigure the mapping at

every 1-second interval.

6.5.4 Greedy Scheduling Algorithm

Solving the above scheduling problem is computationally di�cult, as well as

infeasible to plan o�ine (as the solution varies depending on scene contents).

Thus, we solve it in a greedy manner to obtain an approximate solution.

GPU Coordination. For each scheduling event, the coordinator first checks

how many partitions are left to execute for each DNN. Based on the profiled

latencies of the remaining partitions, the coordinator checks if the inference can

finish within the time left before its deadline; in case a DNN is not expected

to finish within the deadline, the coordinator runs it immediately. If otherwise,

the coordinator determines which DNN to execute based on their current utility

values. Specifically, the MaxMinUtility policy selects a DNN with the current

106

lowest utility. The MaxTotalUtility policy iteratively computes the expected

sum of utilities at the current scheduling event assuming that a specific DNN

chunk is executed, and selects the chunk which maximizes the sum (without

consideration of the future). Specifically, the utility sum is estimated by adding

the latency delay equal to the scheduling interval to the latency utility of the

DNNs that are not chosen, so as to reflect the additional latency delay due to

the execution of another DNN.

CPU O�oading. Among the DNNs running on GPU, the coordinator picks

the DNN experiencing the highest latency and o�oads it to CPU if the profiled

CPU inference time is (1+m)◊ smaller than the current latency on GPU (m

is a positive margin to avoid ping-pong e�ect between CPU and GPU); per

each scheduling event, only one DNN is o�oaded to the CPU. If no DNN is

o�oaded, the coordinator also checks whether it should bring a DNN on CPU

back to GPU. Similarly, a DNN is reloaded to GPU if its inference time on

CPU is (1+m)◊ larger than its last inference time on GPU.

6.6 Additional Optimizations

The end-to-end inference pipeline for every DNN involves several steps that

need to be executed on the CPU: i) preprocessing the input image before the

inference, ii) postprocessing the inference output to an adequate form, and iii)

ops in the model that are unsupported by the GPU backend of the mobile

deep learning framework and needed to be executed on CPU. Granting GPU

access to a DNN that currently needs to run such steps incurs unwanted GPU

idle time, slowing down the overall inference latency. This becomes especially

significant when processing high-resolution complex scene images. For example,

RetinaFace [2] detector with inference pipeline shown in Figure 6.9 spends 106

out of 287 ms total inference time on CPU to process a 1080p image with 20

107

Input
image

Preprocessing

Postprocessing

Resize Normalize Memcpy
(CPUàGPU)

Memcpy
(GPUàCPU)

Non-maximum
suppression

Feature mapà
bounding box

byteà
float

Detection
results

Inference
GPU
ops

CPU
fallback

ops

GPU
ops

Figure 6.9: End-to-end DNN inference pipeline example for RetinaFace [2] de-

tector.

faces. To enhance GPU utilization, we parallelize the following components.

6.6.1 Preprocessing and postprocessing

Before enqueueing a DNN inference to the task queue for the Pseudo-Preemptive

GPU Coordinator to schedule, we run the following steps in parallel with other

DNN inference running on the GPU), so that the DNN can fully occupy the

GPU when given the access from the coordinator.

Preprocessing. The preprocessing steps involve resizing the input frame (RGB

byte array) to the DNN’s input size, converting it to float array, and scaling

the pixel values (e.g., from [0,255] to [-1,1]).

Postprocessing. The postprocessing steps involve converting the inference

output to task-specific forms. For example, face detection requires converting

the output feature map to bounding boxes and performing non-maximum sup-

pression to filter out redundant ones.

6.6.2 CPU Fallback Operators

GPU backend of a mobile deep learning framework typically supports only a

limited number of ops (i.e., a subset of the ops supported in the cloud frame-

work). In case an op is unsupported by the GPU backend, it falls back to CPU

for execution. We identify the CPU fallback op indexes of a DNN at the profil-

108

ing stage and run them in parallel with other DNNs at runtime. Note that CPU

fallback occurs frequently, especially for complex state-of-the-art DNNs. For ex-

ample, TF-Lite does not support tf.image.resize() required in feature pyramid

network [31], which most state-of-the-art object detectors rely on for detecting

small objects. Similarly, MACE does not support common ops such as tf.crop(),

tf.stack().

6.7 Implementation

We implement Heimdall by extending MACE [38], an OpenCL-based mobile

deep learning framework, to partially run a subset of the ops in the DNN at a

time by modifying the MaceEngine.Run() functions (and underlying functions)

to MaceEngine.RunPartial(startIdx, endIdx). We use OpenCV Android SDK 3.4.3

for camera and image processing. We evaluate Heimdall on two commodity

smartphones: LG V50 (Qualcomm Snapdragon 855 SoC, Adreno 640 GPU)

running on Android 10.0.0 and 9.0.0, and Google Pixel 3 XL (Snapdragon 845

SoC, Adreno 630 GPU) running on Android 9.0.0. We also used two di�erent

vendor-provided OpenCL libraries obtained from LG V50 and Google Pixel 2

ROMs. We achieved consistent results across di�erent settings, and report the

best results on LG V50.

We choose the DNNs with su�cient model accuracy for the evaluation,

implement and port them on MACE (the list is summarized in Table 2.2).

We implement RetinaFace [2], ArcFace [21], EAST [17], PoseNet [24] using

TensorFlow 1.12.0. For MobileNet-v1 [28], CPM [27], and StyleTransfer [25], we

use the models provided in the MACE model zoo [198]. For DeepLab-v3 [22]

and YOLO-v2 [23], we use the pre-trained models from the original authors.

109

6.8 Evaluation

6.8.1 Experiment Setup

Scenarios. We evaluate Heimdall for 3 scenarios in Table 2.1 with the DNNs

in Table 2.2: immersive online shopping, augmented interactive workspace, and

AR emoji.

Evaluation metrics. We evaluate Heimdall with following metrics.

• Rendering frame rate: the number of frames rendered on the screen, mea-

sured every 1/3 seconds.

• Inference latency: the time interval between when the DNN inference is

enqueued to the coordinator (after preprocessing), and when the last op of the

model is executed. While we omitted pre/postprocessing latency to evaluate

only the GPU contention coordination performance, end-to-end latency can

also be enhanced as we parallelize such steps as well (Chapter 6.6).

Comparison schemes. We compare Heimdall with the following baselines.

• Baseline MACE creates multiple MaceEngine instances (one per each DNN)

in separate threads and runs multi-DNN and rendering tasks in parallel without

any coordination.

• Model-agnostic DNN partitioning executes 5 ops of a DNN at a time (re-

gardless of the model or rendering requirements). This is supported in MACE

to enhance UI responsiveness by preventing DNNs from occupying the GPU for

too long, implemented by invoking cl::Event.wait() after 5 clEnqueueNDRangeK-

ernel() calls.

6.8.2 Performance Overview

We first evaluate Heimdall with the MaxTotalUtility policy on immersive online

shopping scenario compared with alternatives. The app requirements are set

to render frames at 30 fps, run segmentation (DeepLab-v3) and hand track-

110

 0
 5

 10
 15
 20
 25
 30

Baseline Model-
agnostic

Heimdall

F
ra

m
e
 r

a
te

 (
fp

s
)

(a) Rendering frame rate.

 0
 500

 1000
 1500
 2000

Baseline Model-
agnostic

Heimdall

In
fe

re
n

c
e

 t
im

e
 (

m
s

)

StyleTransfer
YOLO-v2

PoseNet
DeepLab-v3

(b) DNN inference latency.

Figure 6.10: Performance overview of Heimdall on LG V50.

ing (PoseNet) at 1 and 2 fps, respectively. Image style transfer (StyleTransfer)

is set to have higher priority than others to satisfy the low response time re-

quirement.

Figure 6.10(a) shows the rendering performance, where the error bar denotes

the minimum and maximum frame rates. Heimdall supports a stable 29.96 fps

rendering performance, whereas the baseline su�ers from low and fluctuating

frame rate (6.82-17.70 fps, 11.99 on average). While the model-agnostic parti-

tioning slightly enhances the frame rate, it still su�ers from fluctuation due to

the uncoordinated execution of DNNs and rendering.

Figure 6.10(b) shows the DNN latency results, where the error bar denotes

the minimum and maximum inference latencies. Overall, Heimdall e�ciently

coordinates the DNNs to satisfy the app requirements: StyleTransfer, PoseNet,

and DeepLab-v3 run at 109, 409, 919 ms on average, respectively (maximum

139, 548, 1064 ms), while the worst-case inference latency of StyleTransfer is

also reduced by 14.92◊ (from 2074 to 139 ms). This is achieved by i) giving

preemptive access to StyleTransfer, ii) running DeepLab-v3 at the minimum

and PoseNet more frequently to satisfy the latency constraints of both tasks,

and iii) o�oading YOLO-v2 to CPU to reduce GPU contention level (which

also benefits YOLO-v2). Baseline and model-agnostic partitioning that cannot

support such coordination fail to satisfy the app requirements, especially for

StyleTransfer which is more vulnerable to GPU contention due to several CPU

fallback ops as analyzed in Chapter 6.2.

111

 0

 100

 200

 300

YOLO-v2

ArcFace

DeepLab-v3

StyleTransfer

PoseNet

EASTIn
fe

re
n

c
e
 t

im
e
 (

m
s
)

Unpartitioned
Overhead

Rendering
Partitioned

Figure 6.11: DNN partitioning overhead.

6.8.3 DNN Partitioning/Coordination Overhead

Next, we evaluate the DNN partitioning and coordination overhead on inference

latency when executed with 1080p camera frame rendering at 30 fps. Figure 6.11

shows that the total GPU latency of the partitioned DNN chunks remain al-

most identical to unpartitioned inference latency, as Preemption-Enabling DNN

Analyzer tries to pack as many ops as possible. The remaining overhead other

than the rendering latency includes multiple factors, including the GPU idle

time due to DNN chunks that do not perfectly fit into the rendering interval,

scheduling algorithm solver, and logging process for the evaluation (this is neg-

ligible on runtime). Most importantly, our current implementation is limited to

coordinating multiple DNN inferences on CPU (due to fallback or o�oading)

on di�erent cores; other tasks (e.g., camera, pre/postprocessing steps) may in-

terfere and cause latency overhead. We plan to handle the issue in our future

work for further optimization.

6.8.4 Pseudo-Preemptive GPU Coordinator

GPU coordination policy. Figure 6.12 shows how the 3 DNNs in the immer-

sive online shopping scenario are coordinated (i.e., utility over time and GPU

occupancy) on the GPU under two policies in Chapter 6.5.3. Figure 6.12(a)

shows that the MaxMinUtility policy executes a DNN with the currently low-

est utility and enables a fair resource allocation between the 3 DNNs. Fig-

ure 6.12(b) shows that MaxTotalUtility policy favors PoseNet which has higher

112

(a) MaxMinUtility.

(b) MaxTotalUtility.

Figure 6.12: Performance comparison of GPU coordination policies.

priority than others (i.e., higher L0
Di

and “i in Equation (6.3), meaning that the

utility is higher when the inference is enqueued but decays rapidly over time)

to maximize the total utility. As a result, the utility of PoseNet remains higher

than that under the MaxMinUtility policy.

Opportunistic CPU o�oading. Next, we incorporate the opportunistic

CPU o�oading in the same setting as in Figure 6.12(a). Figure 6.13 shows

the GPU/CPU occupancy and utility over time for the 3 DNNs. When CPU

o�oading is triggered at around t=1600 ms, YOLO-v2 (which had the least

priority and thus had been executed sporadically) is o�oaded to CPU. This

benefits the other two DNNs on GPU as the contention level decreases (notice

that the utility of PoseNet becomes higher after CPU o�oading), while YOLO-

v2 also benefits as it experiences faster inference latency as compared to when

it was contending with the other two DNNs on GPU.

113

Figure 6.13: Opportunistic CPU o�oading performance.

6.8.5 Performance for Various App Scenarios

Figure 6.14 shows the performance of Heimdall on two di�erent scenarios: aug-

mented interactive workspace and AR emoji. Overall, we observe consistent

results. Figure 6.14(a) shows that Heimdall enables higher and stable rendering

frame rate. Figure 6.14(b) shows that for the interactive workspace scenario,

Heimdall coordinates the two DNNs by o�oading the text detection (EAST) to

the CPU so that the hand tracking (PoseNet) can run more frequently on the

GPU. However, the latency gain is not as high as expected due to the schedul-

ing overhead caused by multiple concurrent CPU tasks. Finally, Figure 6.14(c)

shows that for the AR emoji scenario, Heimdall prioritizes StyleTransfer to guar-

antee low inference latency, while balancing the latencies between RetinaFace

and DeepLab-v3.

6.8.6 DNN Accuracy

We evaluate the impact of Heimdall on DNN accuracy for the AR emoji scenario.

For repeatable evaluation, we sample 5 videos of a single talking person from

the 300-VW dataset [199]. As the dataset does not provide the face bounding

114

 0
 5

 10
 15
 20
 25
 30

Baseline Model-
agnostic

Heimdall

F
ra

m
e
 r

a
te

 (
fp

s
)

Workspace AR emoji

(a) Rendering frame rate.

 0

 200

 400

 600

Baseline Model-
agnostic

Heimdall

In
fe

re
n

c
e

 t
im

e
 (

m
s

)

PoseNet EAST

(b) DNN inference latency (interactive workspace).

 0

 400

 800

 1200

Baseline Model-
agnostic

Heimdall

In
fe

re
n

c
e

 t
im

e
 (

m
s

)

StyleTransfer
RetinaFace

DeepLab-v3

(c) DNN inference latency (AR emoji).

Figure 6.14: Performance of Heimdall for other AR app scenarios.

Table 6.1: Face detection and person segmentation accuracy (IoU) for the AR

emoji scenario.

Baseline Model-agnostic Heimdall

Bounding box Mask Bounding box Mask Bounding box Mask

0.52±0.12 0.93±0.02 0.57±0.12 0.92±0.02 0.63±0.11 0.90±0.03

box and person segmentation mask labels, we run our DNNs on every frame

and use the results as ground truth to be compared with the runtime detection

results. Table 6.1 shows the detection accuracy in terms of mean Intersection

over Union (IoU). For baseline multi-threading, face detection accuracy remains

low, as RetinaFace (with several CPU fallback ops) runs at only ¥1 fps due

to contention with DeepLab-v3 (Figure 6.14(c)). While model-agnostic parti-

tioning alleviates the issue, it cannot coordinate the two DNNs. With Heimdall,

we can flexibly run RetinaFace more frequently (¥3 fps) to improve the face

detection accuracy at the cost of relatively smaller loss in the segmentation

115

accuracy. Note that the performance gain came from utilizing the app-specific

content characteristics (i.e., the face moves more rapidly than the body). For

other app scenarios, we can similarly take into account the target scene content

characteristics to coordinate multiple DNNs and improve the overall accuracy.

6.8.7 Energy Consumption Overhead

Finally, we report the impact of Heimdall on energy consumption. We use Qual-

comm Snapdragon Profiler [200] to measure the system-level energy consump-

tion. For all the three evaluated app scenarios, baseline multi-threading con-

sumes 4.8–5.1 W, mostly coming from the ¥100% GPU utilization which is

known to be the dominant source of mobile SoC energy consumption [201] (cap-

turing 1080p camera frames and rendering them on screen without any DNN

running consumes 1.9–2.3 W). Similarly, the GPU utilization in Heimdall re-

mains ¥100% and consumes 5.1-5.2 W. The slight increase in the energy con-

sumption comes from the additional CPU tasks coming from the increased

frame rate and the scheduling overhead of the Pseudo-Preemptive GPU coor-

dinator.

116

Chapter 7

Conclusion

7.1 Summary

In this dissertation, we depicted emerging live video analytics app scenarios

and characterized their workload. We then analyzed the technical challenges in

realizing them, and introduced our research vision and systems to develop an

end-to-end edge-cloud cooperative platform to support the workload.

We first designed EagleEye, a wearable camera-based system to identify miss-

ing person(s) in large, crowded urban spaces in real-time. To further innovate

the performance of the state-of-the-art face identification techniques on LR face

recognition, we designed a novel ICN and a training methodology that utilize

the probes of the target to recover missing facial details in the LR faces for

accurate recognition. We also develop Content-Adaptive Parallel Execution to

run the complex multi-DNN face identification pipeline at low latency using

heterogeneous processors on mobile and cloud. Our results show that ICN sig-

nificantly enhances LR face recognition accuracy (true positive by 78% with

only 14% false positive), and EagleEye accelerates the latency by 9.07◊ with

only 108 KBytes of data o�oaded to the cloud.

We next designed Pendulum, an end-to-end live video analytics system with

117

network-compute joint scheduling. To overcome the limitations of single-stage

scheduling systems in alternating resource bottleneck scenarios, we leverage

the interplay between the video bitrate and DNN complexity. Based on this,

we design Pendulum composed of (i) a joint scheduling mechanism (to estimate

network, compute resource demands and availabilities as well as control resource

usages), and (ii) joint resource scheduler. Our evaluation results show that

Pendulum achieves up to 0.64 mIoU gain (from 0.17 to 0.81) and 1.29◊ higher

throughput compared to baselines.

Finally, we designed Heimdall, a mobile GPU coordination platform for

emerging AR apps. To coordinate multi-DNN and rendering tasks, the Preemption-

Enabling DNN Analyzer partitions the DNN into smaller units to enable fine-

grained GPU time-sharing with minimal DNN inference latency overhead. Fur-

thermore, the Pseudo-Preemptive GPU Coordinator flexibly prioritizes and

schedules the multi-DNN and rendering tasks on GPU and CPU to satisfy

the app requirements. Heimdall e�ciently supports multiple AR app scenarios,

enhancing the frame rate from 11.99 to 29.96 fps while reducing the worst-case

DNN inference latency by up to ¥15 times compared to the baseline multi-

threading approach.

7.2 Discussion

7.2.1 Scalability and Generality of EagleEye to Other Workloads

Scalability to multi-person identification scenarios. While we designed

EagleEye for single person identification scenarios, we expect that it can be eas-

ily scaled to identifying multiple targets. The only change required is extending

the Identity-Specific Fine-Tuning of ICN towards multiple targets. We expect

that the fine-tuning process in Chapter 4.5.2 can be applied to the aggregated

probe datasets of multiple targets (e.g., 30 reference photos per each target as

118

evaluated in Chapter 4.8.3), as ICN has enough capacity to overfit to multi-

ple targets (c.f., it is originally trained on FFHQ [143] with 70K identities).

However, elaborating the training process would also help; for example, addi-

tional feature di�erence loss on the generated output face images to distinguish

similar-looking targets.

Generality to other analysis workloads. The workload of other futuristic

multi-DNN-enabled live video analytics applications is similar to EagleEye’s

face identification pipeline in that they require running a series of complex

DNNs repetitively to detect objects in a high-resolution scene image and analyze

each identified instance (e.g., surveillance CCTVs running action recognition

on individual person for crime/anomaly monitoring, Mixed Reality telepresence

application where the AR glasses estimates each person’s pose in its field of view

and generating virtual avatar motion in the receipient’s VR headset). For such

workloads, EagleEye’s Content-Adaptive Parallel Execution can be generally

adapted to enhance performance by applying di�erent pipeline depending on

the content and parallelizing the execution over heterogeneous processors on

mobile and cloud.

7.2.2 Generality of Pendulum to Wider Network and System En-

vironments

Joint Scheduling Knob Choices Under Other System Goals. We choose

the knobs mainly to maximize control independency. However, other knob

choices can also be feasible under di�erent goals. For example, to minimize GPU

memory overhead for edge device deployment, quantization can be considered

with some model preparation e�orts. When handling a wide range of network

bandwidths including extreme bottleneck (e.g., < 1 Mbps for LPWAN-based

disaster monitoring [202]), enhancement can be an adequate knob.

Extension to edge-cloud collaborative inference systems. Joint schedul-

119

ing can be extended to a collaborative inference context, i.e., across (i) on-

device, (ii) network, and (iii) cloud stages. For example, in case of a compute

bottleneck, the mobile device can partially run the DNN inference workload

and o�oad the remaining to the cloud (e.g., partial RoIs [7, 99] or DNN inter-

mediate features [14, 100, 101]), which can be jointly scheduled at the network

and the cloud stages.

Extension to RAN RB scheduling. We can further improve joint scheduling

e�ciency if the video analytics operator also has control over RAN RB scheduler

(e.g., in private 5G [203, 204] or RAN slicing [164] scenarios). Specifically, RB

scheduler can also take into account app context (e.g., video frame size, inference

workload), which helps guarantee throughput at a more fine-grained level (e.g.,

per-frame latency guarantee). While Tutti [4] recently studied a similar idea,

it only considers RB scheduling (not the end-to-end pipeline including DNN

inference) as well as does not consider joint scheduling.

7.2.3 Impact of Hardware Evolution on Heimdall

7.2.3.1 Mobile GPU Evolution

Even when mobile GPUs evolve similar to desktop GPUs, the need for an app-

aware coordination platform to dynamically schedule multiple tasks to satisfy

the AR app requirements will persist.

Parallelization. With the architecture support, we can consider porting desk-

top GPU computing platforms (e.g., recent CUDA for ARM server platforms [205])

and spatially partitioning the GPU to run multi-DNN and rendering tasks con-

currently. However, due to a limited number of computing cores and power of

mobile GPUs (e.g., RTX 2080Ti: 13.45 TFLOPs vs. Adreno 640: 954 GFLOPs),

static partitioning would be limited in running multiple compute-intensive DNNs.

Instead, a coordinator should dynamically allocate resources at runtime; when

120

an inference request for a heavy DNN with high priority is enqueued, the co-

ordinator should allocate more number of partitioned resources dynamically to

minimize response time.

Preemption. With fine-grained, near-zero overhead preemption support (e.g.,

NVIDIA Pascal GPUs [206] support instruction-level preemption at 0.1 ms

scale [207]), we can consider employing prior multi-DNN scheduling for desktop

GPUs [69,71]. However, prior works mostly assume that the task priorities are

fixed in advance, whereas in AR apps they can be dynamic depending on the

scene contents (e.g., in the surroundings monitoring scenario, face detection

would need to run more frequently than object detection in case there are

many people). Therefore, a coordinator would be needed to dynamically adjust

priorities at runtime for app usability.

7.2.3.2 Emergence of NPUs/TPUs

Recently, neural processors are being prevalent in mobile/edge devices (e.g.,

Google Pixel edge TPU [208], Huawei Kirin NPU [209]). Several recent works

also utilize such neural processors to run the multi-DNN inference workload

(e.g., HERTI [210]-NPU, Band [211]-DSP and NPU). Such processors maximize

computing power by packing a large number of cores specialized for DNN infer-

ence. For example, Google TPUs employ 128◊128 systolic array-based matrix

units (MXUs), which accelerate matrix multiplication by hard-wired calcula-

tion without memory access. We envision that Heimdall’s Pseudo-Preemption

mechanism can also be useful in coordinating multiple tasks on such neural pro-

cessors, as i) it is challenging to preempt the hard-wired MXUs, and ii) context

switch overhead on bandwidth-limited mobile SoCs can be more costly due to

larger state sizes than GPUs.

121

Figure 7.1: DNN inference complexity (assuming 1080p@30fps input) vs. hard-

ware capability (NPU: Apple A12-A17, GPU: Qualcomm Adreno 630-740).

7.3 Future Projection: Would the Importance of Sys-

tem Optimization Persist?

With hardware evolution (e.g., NPU/TPU) as well as emergence of next-generation

wireless networks (e.g., 5G/6G, Wi-Fi 6), production systems are provisioned

more network and compute resources. While such trend alleviates the challenges

in supporting the concurrent multi-DNN and rendering workload of emerging

live video analytics apps, we believe that the importance of system optimization

will continue, as the workload is growing at a faster speed than the resource

capacity increase.

7.3.1 DNN complexity increase vs. hardware evolution

Emerging live video analytics apps require more number of complex analy-

sis tasks for higher levels of video understanding and user immersiveness. For

example, surveillance apps require spatio-temporal video analysis for complex

event detection (e.g., action recognition, anomaly detection), and MR apps

require NeRF for realistic 3D content generation. Furthermore, DNN architec-

122

tures are becoming more deeper and complex for higher accuracy. For example,

vision transformers are outperforming traditional CNNs for various video anal-

ysis tasks (e.g., object detection) [212, 213], but at the cost of 10–30◊ latency

increase. Figure 7.1 shows that the inference complexity growth speed is much

faster than the hardware compute capabilities. System optimization techniques

including EagleEye’s content-aware adaptation and edge-cloud cooperative in-

ference, Heimdall’s multi-DNN concurrency support will be more important to

support such complex workloads on resource-constrained edge devices with low

latency.

7.3.2 Video bitrate increase vs. network evolution

Furthermore, emerging live video analytics apps require high-resolution, multi-

modal video processing. For example, city-scale surveillance requires multi-view

4K/8K and 360° video processing for wide coverage, and autonomous driving

and AR require 3D point cloud video processing for accurate 3D perception.

The data rate of such high-quality, multi-modal videos exceed the capacity

of networks. For example, Figure 7.2 compares the video bitrate and network

bandwidth (target per-user bandwidths and actual measurements). 3D point

cloud video data rate is >1 Gbps [214]), whereas 5G eMBB (Enhanced Mobile

Broadband) aims at 100 Mbps user-experienced throughput. Recent study also

shows that practical 5G deployments only support ¥30 Mbps uplink through-

put [4], resulting in long latency for high-resolution video streaming. Thus,

content-aware adaptation techniques (e.g., adaptive face recognition in Eagle-

Eye, network-compute joint scheduling in Pendulum) will still be crucial to op-

timize data size and latency.

Furthermore, physical layer bandwidth increase in next-generation networks

does not directly convert to the application latency gain. For example, when

comparing the EagleEye o�oading latency (Chapter 2.2.2) in 4G (11 Mbps)

123

Figure 7.2: Video bitrate vs. network bandwidth (Green: target per-user expe-

rienced bandwidths of 4G, 5G, 6G, Blue: actual measurements from existing

traces [3, 4] and our own measurements).

and 5G (45 Mbps), the end-to-end app latency gain (3.4 vs 2.1 seconds) does

not proportionally increase with the ¥4◊ bandwidth increase. This is due to

several reasons. First, RAN resource scheduling a�ects the app-layer latency.

For example, video tra�c is classified as best e�ort in 5G QoS specification, and

it su�ers from queueing delay from long tra�c flows (e.g., file transfer) [186].

Also, the bu�er status report and uplink resource grant also has unpredictable

delays, which can exceed 100 ms for commercial 5G [4]. Second, device power

management strategy also a�ects the latency. For example, 4G LTE uses DRX

mode, which makes UEs go idle states periodically to save energy, however

waking up the idle mode for data transfer incurs about 30 ms latency [215].

124

7.4 Future Works

7.4.1 System Support for 3D Point Cloud Videos

Our current platform is mostly designed for high-resolution RGB videos. We

plan to extend our platform support for more sensor modalities (e.g., RGB-

D, LiDAR) for diverse live video analytics applications. As an initial attempt,

we are designing an end-to-end live video analytics platform for 3D point cloud

videos. 3D point cloud analysis add a new dimension of depth perception, which

is crucial for various live video analytics apps (e.g., autonomous driving, indoor

robot navigation). Especially, processing the 3D point cloud yields higher accu-

racy than 2D projection with lower number of FLOPs (e.g., 5% higher accuracy

with 7◊ small MACs [216]). However, streaming and analyzing 3D point cloud is

challenging due to its large data size. For example, our preliminary study shows

that the end-to-end Octree-based streaming and 3D object detection pipeline

takes ¥800 ms for 110 K points LiDAR frame. Fast and e�cient 3D point cloud

is also non-trivial, mainly due to its high data sparsity. Despite the challenges,

we identified a key opportunity for optimization: objects only compose ¥10%

for typical 3D point cloud frames. We are currently developing a system that

e�ciently selects among multiple sampling features (e.g., edge filtering, resolu-

tion scaling, temporal tracking) to e�ciently sample high-saliency points (and

thus the streaming and analysis latency) from the input point cloud without

accuracy drop.

7.4.2 App-RAN Cross-Layer Optimization

Pendulum currently takes the network-as-a-black-box approach (i.e., app-level

bandwidth estimation and bitrate control). We plan to extend joint scheduling

to app-RAN cross layer control. Specifically, we expect the following schedul-

ing gains if the platform operator has control over both the RAN (e.g., private

125

5G [203, 204]) and the cloud server. i) Better Scheduling Accuracy and Cost

Reduction. The RAN can provide a more accurate estimate of the network

bandwidth to the cloud server based on the monitored channel status at the

physical layer (e.g., uplink SINR) [171]. The RAN can also dynamically allo-

cate bandwidth (Resource Blocks, RBs) across users considering their video

content and network-compute tradeo�s (e.g., higher bandwidth to users with

more dynamic scenes) to reduce overall cost. For example, our preliminary ex-

periment with real-world video traces from BDD and MOT datasets shows that

app-aware RB scheduling reduces the overall compute cost by up to 52% com-

pared to app-agnostic equal RB scheduling. ii) Per-Frame Latency Guarantee.

By jointly scheduling the RB transmission order as well as the GPU inference

order, we can improve per-frame latency predictability and latency SLO satis-

faction ratio. For example, in case a user’s frame transmission is unexpectedly

delayed due to SINR fluctuation, we can prioritize his DNN inference at the

cloud server to compensate for the delay and meet the latency deadline. We

plan to integrate such cross-layer control in our future work.

126

Bibliography

[1] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection

for mobile augmented reality,” in The 25th Annual International Confer-

ence on Mobile Computing and Networking, 2019, pp. 1–16.

[2] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou, “Reti-

naFace: Single-stage dense face localisation in the wild,” arXiv preprint

arXiv:1905.00641, 2019.

[3] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mick-

ens, and H. Balakrishnan, “Mahimahi: Accurate Record-and-Replay for

HTTP,” in 2015 USENIX Annual Technical Conference (USENIX ATC

15), 2015, pp. 417–429.

[4] D. Xu, A. Zhou, G. Wang, H. Zhang, X. Li, J. Pei, and H. Ma, “Tutti:

coupling 5g ran and mobile edge computing for latency-critical video an-

alytics,” in Proceedings of the 28th Annual International Conference on

Mobile Computing And Networking, 2022, pp. 729–742.

[5] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and

M. J. Freedman, “Live video analytics at scale with approximation and

{Delay-Tolerance},” in 14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 17), 2017, pp. 377–392.

127

[6] X. Liu, P. Ghosh, O. Ulutan, B. Manjunath, K. Chan, and R. Govindan,

“Caesar: cross-camera complex activity recognition,” in Proceedings of

the 17th Conference on Embedded Networked Sensor Systems, 2019, pp.

232–244.

[7] J. Yi, S. Choi, and Y. Lee, “EagleEye: Wearable camera-based person

identification in crowded urban spaces,” in Proceedings of the 16th Annual

International Conference on Mobile Computing and Networking. ACM,

2020.

[8] J. Yi and Y. Lee, “Heimdall: mobile gpu coordination platform for aug-

mented reality applications,” in Proceedings of the 26th Annual Interna-

tional Conference on Mobile Computing and Networking, 2020, pp. 1–14.

[9] Z. Li, M. Annett, K. Hinckley, K. Singh, and D. Wigdor, “HoloDoc: En-

abling mixed reality workspaces that harness physical and digital con-

tent,” in Proceedings of the 2019 CHI Conference on Human Factors in

Computing Systems, 2019, pp. 1–14.

[10] X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: scaling live video

analytics with workload-adaptive distributed edge intelligence,” in Pro-

ceedings of the 18th Conference on Embedded Networked Sensor Systems,

2020, pp. 409–421.

[11] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-

ing with pensieve,” in Proceedings of the conference of the ACM special

interest group on data communication, 2017, pp. 197–210.

[12] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic ap-

proach for dynamic adaptive video streaming over http,” in Proceedings

of the 2015 ACM Conference on Special Interest Group on Data Commu-

nication, 2015, pp. 325–338.

128

[13] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, e�ciency, and sta-

bility in http-based adaptive video streaming with festive,” in Proceedings

of the 8th international conference on Emerging networking experiments

and technologies, 2012, pp. 97–108.

[14] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,

“Spinn: synergistic progressive inference of neural networks over device

and cloud,” in Proceedings of the 26th Annual International Conference

on Mobile Computing and Networking, 2020, pp. 1–15.

[15] “Samsung Galaxy S9 AR Emoji,” https://www.sammobile.com/news/

galaxy-s9-ar-emoji-explained-how-to-create-and-use-them/. Accessed:

25 Mar. 2020.

[16] A. Mathur, N. D. Lane, S. Bhattacharya, A. Boran, C. Forlivesi, and

F. Kawsar, “DeepEye: Resource e�cient local execution of multiple deep

vision models using wearable commodity hardware,” in Proceedings of the

15th Annual International Conference on Mobile Systems, Applications,

and Services. ACM, 2017, pp. 68–81.

[17] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang,

“EAST: an e�cient and accurate scene text detector,” in Proceedings of

the IEEE conference on Computer Vision and Pattern Recognition, 2017,

pp. 5551–5560.

[18] L. N. Huynh, Y. Lee, and R. K. Balan, “DeepMon: Mobile gpu-based deep

learning framework for continuous vision applications,” in Proceedings of

the 15th Annual International Conference on Mobile Systems, Applica-

tions, and Services. ACM, 2017, pp. 82–95.

[19] X. Zeng, K. Cao, and M. Zhang, “MobileDeepPill: A small-footprint mo-

bile deep learning system for recognizing unconstrained pill images,” in

129

https://www.sammobile.com/news/galaxy-s9-ar-emoji-explained-how-to-create-and-use-them/
https://www.sammobile.com/news/galaxy-s9-ar-emoji-explained-how-to-create-and-use-them/

Proceedings of the 15th Annual International Conference on Mobile Sys-

tems, Applications, and Services. ACM, 2017, pp. 56–67.

[20] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “DeepCache: Principled

cache for mobile deep vision,” in Proceedings of the 24th Annual Interna-

tional Conference on Mobile Computing and Networking. ACM, 2018,

pp. 129–144.

[21] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Additive angular

margin loss for deep face recognition,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2019, pp. 4690–4699.

[22] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schro�, and H. Adam, “Encoder-

decoder with atrous separable convolution for semantic image segmen-

tation,” in Proceedings of the European conference on computer vision

(ECCV), 2018, pp. 801–818.

[23] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in

IEEE CVPR, 2017.

[24] C. Zimmermann and T. Brox, “Learning to estimate 3d hand pose from

single rgb images,” in Proceedings of the IEEE International Conference

on Computer Vision, 2017, pp. 4903–4911.

[25] L. Engstrom, “Fast style transfer,” https://github.com/lengstrom/fast-

style-transfer/, 2016.

[26] “Microsoft HoloLens 2,” https://www.microsoft.com/en-us/hololens/.

Accessed: 25 Mar. 2020.

[27] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional

pose machines,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016, pp. 4724–4732.

130

https://github.com/lengstrom/fast-style-transfer/
https://github.com/lengstrom/fast-style-transfer/
https://www.microsoft.com/en-us/hololens/

[28] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. An-dreetto, and H. Adam, “MobileNets: E�cient convolutional

neural networks for mobile vision applications,” in arXiv preprint

arXiv:1704.04861, 2017.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778.

[30] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-

bileNetV2: Inverted residuals and linear bottlenecks,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, 2018,

pp. 4510–4520.

[31] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,

“Feature pyramid networks for object detection,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2017,

pp. 2117–2125.

[32] X. Xie and K.-H. Kim, “Source compression with bounded dnn percep-

tion loss for iot edge computer vision,” in The 25th Annual International

Conference on Mobile Computing and Networking, 2019, pp. 1–16.

[33] “Ultralytics YOLOv5,” https://github.com/ultralytics/yolov5. Accessed:

1 Feb. 2024.

[34] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler, “Motchallenge

2015: Towards a benchmark for multi-target tracking,” arXiv preprint

arXiv:1504.01942, 2015.

[35] “User Equipment (UE) radio access capabilities (3GPP TS 38.306 version

17.0.0 Release 17).” https://www.etsi.org/deliver/etsi ts/138300 138399/

138306/17.00.00 60/ts 138306v170000p.pdf. Accessed: 1 Feb. 2024.

131

https://github.com/ultralytics/yolov5
https://www.etsi.org/deliver/etsi_ts/138300_138399/138306/17.00.00_60/ts_138306v170000p.pdf
https://www.etsi.org/deliver/etsi_ts/138300_138399/138306/17.00.00_60/ts_138306v170000p.pdf

[36] “GSMA. 2020. 5G TDD Synchronisation Guidelines and Recom-

mendations for the Coexistence of TDD Networks in the 3.5

GHz Range.” https://www.gsma.com/spectrum/wp-content/uploads/

2020/04/3.5-GHz-5G-TDD-Synchronisation.pdf. Accessed: 1 Feb. 2024.

[37] “TensorFlow-Lite on GPU for Mobile,” https://www.tensorflow.org/lite/

performance/gpu advanced. Accessed: 15 Dec. 2019.

[38] “XiaoMi Mobile AI Compute Engine (MACE),” https://github.com/

XiaoMi/mace. Accessed: 25 Mar. 2020.

[39] P. Hu and D. Ramanan, “Finding tiny faces,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2017, pp. 951–959.

[40] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,

“Chameleon: scalable adaptation of video analytics,” in Proceedings of

the 2018 Conference of the ACM Special Interest Group on Data Com-

munication, 2018, pp. 253–266.

[41] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan,

“Towards wearable cognitive assistance,” in Proceedings of the 12th annual

international conference on Mobile systems, applications, and services.

ACM, 2014, pp. 68–81.

[42] P. Jain, J. Manweiler, and R. Roy Choudhury, “OverLay: Practical mo-

bile augmented reality,” in Proceedings of the 13th Annual International

Conference on Mobile Systems, Applications, and Services. ACM, 2015,

pp. 331–344.

[43] K. Chen, T. Li, H.-S. Kim, D. E. Culler, and R. H. Katz, “MARVEL:

Enabling mobile augmented reality with low energy and low latency,” in

Proceedings of the 16th ACM Conference on Embedded Networked Sensor

Systems. ACM, 2018, pp. 292–304.

132

https://www.gsma.com/spectrum/wp-content/uploads/2020/04/3.5-GHz-5G-TDD-Synchronisation.pdf%20
https://www.gsma.com/spectrum/wp-content/uploads/2020/04/3.5-GHz-5G-TDD-Synchronisation.pdf%20
https://www.tensorflow.org/lite/performance/gpu_advanced
https://www.tensorflow.org/lite/performance/gpu_advanced
https://github.com/XiaoMi/mace
https://github.com/XiaoMi/mace

[44] A. Padmanabhan, N. Agarwal, A. Iyer, G. Ananthanarayanan, Y. Shu,

N. Karianakis, G. H. Xu, and R. Netravali, “Gemel: Model merging

for memory-e�cient, real-time video analytics at the edge,” in USENIX

NSDI, April 2023.

[45] F. Cangialosi, N. Agarwal, V. Arun, S. Narayana, A. Sarwate, and R. Ne-

travali, “Privid: Practical,{Privacy-Preserving} video analytics queries,”

in 19th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 22), 2022, pp. 209–228.

[46] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu, N. Kari-

anakis, K. Hsieh, P. Bahl, and I. Stoica, “Ekya: Continuous learning of

video analytics models on edge compute servers,” in 19th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 22),

2022, pp. 119–135.

[47] K. Mehrdad, G. Ananthanarayanan, K. Hsieh, J. J. , R. N. , Y. Shu,

M. Alizadeh, and V. Bahl, “Recl: Responsive resource-e�cient continuous

learning for video analytics,” in USENIX NSDI, April 2023.

[48] “Alibaba Mobile Neural Network (MNN),” https://github.com/alibaba/

MNN. Accessed: 25 Mar. 2020.

[49] “Qualcomm Neural Processing SDK for AI,” https://developer.

qualcomm.com/software/qualcomm-neural-processing-sdk. Accessed: 25

Mar. 2020.

[50] S. Bhattacharya and N. D. Lane, “Sparsifying deep learning layers for

constrained resource inference on wearables,” in Proc. ACM SenSys, 2016.

[51] N. D. Lane, P. Georgiev, and L. Qendro, “DeepEar: robust smartphone

audio sensing in unconstrained acoustic environments using deep learn-

133

https://github.com/alibaba/MNN
https://github.com/alibaba/MNN
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk

ing,” in Proceedings of the 2015 ACM International Joint Conference on

Pervasive and Ubiquitous Computing. ACM, 2015, pp. 283–294.

[52] S. Yao, Y. Zhao, H. Shao, S. Liu, D. Liu, L. Su, and T. Abdelzaher, “Fast-

DeepIoT: Towards understanding and optimizing neural network execu-

tion time on mobile and embedded devices,” in Proceedings of the 16th

ACM Conference on Embedded Networked Sensor Systems. ACM, 2018,

pp. 278–291.

[53] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep

model compression for mobile devices: A usage-driven model selection

framework,” in Proceedings of the 16th Annual International Conference

on Mobile Systems, Applications, and Services. ACM, 2018, pp. 389–400.

[54] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qen-

dro, and F. Kawsar, “DeepX: A software accelerator for low-power deep

learning inference on mobile devices,” in Proceedings of the 15th Interna-

tional Conference on Information Processing in Sensor Networks. IEEE

Press, 2016, p. 23.

[55] R. Lee, S. I. Venieris, L. Dudziak, S. Bhattacharya, and N. D. Lane,

“MobiSR: E�cient on-device super-resolution through heterogeneous mo-

bile processors,” in The 25th Annual International Conference on Mobile

Computing and Networking. ACM, 2019, p. 54.

[56] B. Fang, X. Zeng, and M. Zhang, “NestDNN: Resource-aware multi-

tenant on-device deep learning for continuous mobile vision,” in Proceed-

ings of the 24th Annual International Conference on Mobile Computing

and Networking. ACM, 2018, pp. 115–127.

[57] S. Lee and S. Nirjon, “Fast and scalable in-memory deep multitask learn-

ing via neural weight virtualization,” in Proceedings of the 18th Interna-

134

tional Conference on Mobile Systems, Applications, and Services, 2020,

pp. 175–190.

[58] A. H. Jiang, D. L.-K. Wong, C. Canel, L. Tang, I. Misra, M. Kamin-

sky, M. A. Kozuch, P. Pillai, D. G. Andersen, and G. R. Ganger, “Main-

stream: Dynamic stem-sharing for multi-tenant video processing,” in 2018

USENIX Annual Technical Conference (USENIX ATC), 2018, pp. 29–42.

[59] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero,

“Enabling preemptive multiprogramming on GPUs,” in 2014 ACM/IEEE

41st International Symposium on Computer Architecture (ISCA). IEEE,

2014, pp. 193–204.

[60] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative preemp-

tion for multitasking on a shared GPU,” ACM SIGPLAN Notices, vol. 50,

no. 4, pp. 593–606, 2015.

[61] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo, “Si-

multaneous multikernel GPU: Multi-tasking throughput processors via

fine-grained sharing,” in 2016 IEEE International Symposium on High

Performance Computer Architecture (HPCA). IEEE, 2016, pp. 358–369.

[62] “NVIDIA Hyper-Q,” http://developer.download.nvidia.com/compute/

DevZone/C/html x64/6 Advanced/simpleHyperQ/doc/HyperQ.pdf. Ac-

cessed: 25 Mar. 2020.

[63] “NVIDIA GPU virtualization,” https://www.nvidia.com/ko-kr/data-

center/graphics-cards-for-virtualization/. Accessed: 25 Mar. 2020.

[64] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving GPGPU

concurrency with elastic kernels,” in ACM SIGPLAN Notices, vol. 48,

no. 4. ACM, 2013, pp. 407–418.

135

http://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
http://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
https://www.nvidia.com/ko-kr/data-center/graphics-cards-for-virtualization/
https://www.nvidia.com/ko-kr/data-center/graphics-cards-for-virtualization/

[65] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu, “Improv-

ing GPGPU resource utilization through alternative thread block schedul-

ing,” in 2014 IEEE 20th International Symposium on High Performance

Computer Architecture (HPCA). IEEE, 2014, pp. 260–271.

[66] B. Wu, G. Chen, D. Li, X. Shen, and J. Vetter, “Enabling and exploiting

flexible task assignment on GPU through SM-centric program transfor-

mations,” in Proceedings of the 29th ACM on International Conference

on Supercomputing. ACM, 2015, pp. 119–130.

[67] R. Ausavarungnirun, V. Miller, J. Landgraf, S. Ghose, J. Gandhi, A. Jog,

C. J. Rossbach, and O. Mutlu, “MASK: Redesigning the GPU memory

hierarchy to support multi-application concurrency,” in ACM SIGPLAN

Notices, vol. 53, no. 2. ACM, 2018, pp. 503–518.

[68] Z. Fang, D. Hong, and R. K. Gupta, “Serving deep neural networks at the

cloud edge for vision applications on mobile platforms,” in Proceedings of

the 10th ACM Multimedia Systems Conference, 2019, pp. 36–47.

[69] H. Zhou, S. Bateni, and C. Liu, “S3DNN: Supervised streaming and

scheduling for GPU-accelerated real-time DNN workloads,” in 2018

IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS). IEEE, 2018, pp. 190–201.

[70] M. Yang, S. Wang, J. Bakita, T. Vu, F. D. Smith, J. H. Ander-

son, and J.-M. Frahm, “Re-thinking CNN frameworks for time-sensitive

autonomous-driving applications: Addressing an industrial challenge,” in

2019 IEEE Real-Time and Embedded Technology and Applications Sym-

posium (RTAS). IEEE, 2019, pp. 305–317.

[71] Y. Xiang and H. Kim, “Pipelined data-parallel CPU/GPU scheduling for

multi-DNN real-time inference,” in IEEE RTSS, 2019.

136

[72] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krish-

namurthy, “MCDNN: An approximation-based execution framework for

deep stream processing under resource constraints,” in Proceedings of the

14th Annual International Conference on Mobile Systems, Applications,

and Services. ACM, 2016, pp. 123–136.

[73] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A mobile

deep learning framework for edge video analytics,” in IEEE INFOCOM

2018-IEEE Conference on Computer Communications. IEEE, 2018, pp.

1421–1429.

[74] P. Jain, J. Manweiler, and R. Roy Choudhury, “Low bandwidth o�oad

for mobile ar,” in Proceedings of the 12th International on Conference on

emerging Networking EXperiments and Technologies. ACM, 2016, pp.

237–251.

[75] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,

“Glimpse: Continuous, real-time object recognition on mobile devices,” in

Proceedings of the 13th ACM Conference on Embedded Networked Sensor

Systems. ACM, 2015, pp. 155–168.

[76] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection

for mobile augmented reality,” in Proceedings of the 24th Annual Interna-

tional Conference on Mobile Computing and Networking. ACM, 2019.

[77] J. Hu, A. Shearer, S. Rajagopalan, and R. LiKamWa, “Banner: An image

sensor reconfiguration framework for seamless resolution-based tradeo�s,”

in Proceedings of the 17th Annual International Conference on Mobile

Systems, Applications, and Services. ACM, 2019, pp. 236–248.

[78] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Netravali,

“Reducto: On-camera filtering for resource-e�cient real-time video ana-

137

lytics,” in Proceedings of the Annual conference of the ACM Special In-

terest Group on Data Communication on the applications, technologies,

architectures, and protocols for computer communication, 2020, pp. 359–

376.

[79] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,

M. Philipose, P. B. Gibbons, and O. Mutlu, “Focus: Querying large video

datasets with low latency and low cost,” in 13th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 18), 2018, pp.

269–286.

[80] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:

optimizing neural network queries over video at scale,” arXiv preprint

arXiv:1703.02529, 2017.

[81] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kamin-

sky, and S. Dulloor, “Scaling video analytics on constrained edge nodes,”

Proceedings of Machine Learning and Systems, vol. 1, pp. 406–417, 2019.

[82] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and S. Banerjee, “The

design and implementation of a wireless video surveillance system,” in

Proceedings of the 21st Annual International Conference on Mobile Com-

puting and Networking, 2015, pp. 426–438.

[83] C. Pakha, A. Chowdhery, and J. Jiang, “Reinventing video streaming for

distributed vision analytics,” in 10th USENIX workshop on hot topics in

cloud computing (HotCloud 18), 2018.

[84] M. Xu, T. Xu, Y. Liu, and F. X. Lin, “Video analytics with zero-streaming

cameras,” in 2021 USENIX Annual Technical Conference (USENIX ATC

21), 2021, pp. 459–472.

138

[85] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee, “Aw-

stream: Adaptive wide-area streaming analytics,” in Proceedings of the

2018 Conference of the ACM Special Interest Group on Data Communi-

cation, 2018, pp. 236–252.

[86] W. Zhang, Z. He, L. Liu, Z. Jia, Y. Liu, M. Gruteser, D. Raychaudhuri,

and Y. Zhang, “Elf: accelerate high-resolution mobile deep vision with

content-aware parallel o�oading,” in Proceedings of the 27th Annual In-

ternational Conference on Mobile Computing and Networking, 2021, pp.

201–214.

[87] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Ho�mann, and

J. Jiang, “Server-driven video streaming for deep learning inference,” in

Proceedings of the Annual conference of the ACM Special Interest Group

on Data Communication on the applications, technologies, architectures,

and protocols for computer communication, 2020, pp. 557–570.

[88] Y. Wang, W. Wang, J. Zhang, J. Jiang, and K. Chen, “Bridging the edge-

cloud barrier for real-time advanced vision analytics,” in 11th USENIX

Workshop on Hot Topics in Cloud Computing (HotCloud 19), 2019.

[89] H. Yeo, Y. Jung, J. Kim, J. Shin, and D. Han, “Neural adaptive content-

aware internet video delivery,” in 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18), 2018, pp. 645–661.

[90] J. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han, “Neural-enhanced live stream-

ing: Improving live video ingest via online learning,” in Proceedings of the

Annual conference of the ACM Special Interest Group on Data Commu-

nication on the applications, technologies, architectures, and protocols for

computer communication, 2020, pp. 107–125.

139

[91] K. Du, Q. Zhang, A. Arapin, H. Wang, Z. Xia, and J. Jiang, “Accmpeg:

Optimizing video encoding for accurate video analytics,” Proceedings of

Machine Learning and Systems, vol. 4, pp. 450–466, 2022.

[92] F. Romero, M. Zhao, N. J. Yadwadkar, and C. Kozyrakis, “Llama: A

heterogeneous & serverless framework for auto-tuning video analytics

pipelines,” in Proceedings of the ACM Symposium on Cloud Computing,

2021, pp. 1–17.

[93] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Krishna-

murthy, and R. Sundaram, “Nexus: A gpu cluster engine for accelerating

dnn-based video analysis,” in Proceedings of the 27th ACM Symposium

on Operating Systems Principles, 2019, pp. 322–337.

[94] R. LiKamWa and L. Zhong, “Starfish: E�cient concurrency support for

computer vision applications,” in Proceedings of the 13th Annual Interna-

tional Conference on Mobile Systems, Applications, and Services. ACM,

2015, pp. 213–226.

[95] Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio, M. Weimer, and

M. Interlandi, “pretzel: Opening the black box of machine learning pre-

diction serving systems,” in 13th USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI 18), 2018, pp. 611–626.

[96] H. Guo, S. Yao, Z. Yang, Q. Zhou, and K. Nahrstedt, “Crossroi: cross-

camera region of interest optimization for e�cient real time video an-

alytics at scale,” in Proceedings of the 12th ACM Multimedia Systems

Conference, 2021, pp. 186–199.

[97] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan, J. Jiang, Y. Shu,

P. Bahl, and J. Gonzalez, “Spatula: E�cient cross-camera video analyt-

140

ics on large camera networks,” in 2020 IEEE/ACM Symposium on Edge

Computing (SEC). IEEE, 2020, pp. 110–124.

[98] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and

I. Stoica, “Clipper: A low-latency online prediction serving system,” in

14th USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI 17), 2017, pp. 613–627.

[99] J. Yi, S. Kim, J. Kim, and S. Choi, “Supremo: Cloud-assisted low-latency

super-resolution in mobile devices,” IEEE Transactions on Mobile Com-

puting, 2020.

[100] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and

L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud

and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,

no. 1, pp. 615–629, 2017.

[101] S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelzaher,

“Deep compressive o�oading: Speeding up neural network inference by

trading edge computation for network latency,” in Proceedings of the 18th

Conference on Embedded Networked Sensor Systems, 2020, pp. 476–488.

[102] L. Yu and W. Xiang, “X-pruner: explainable pruning for vision transform-

ers,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2023, pp. 24 355–24 363.

[103] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han,

“Smoothquant: Accurate and e�cient post-training quantization for large

language models,” in International Conference on Machine Learning.

PMLR, 2023, pp. 38 087–38 099.

141

[104] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and

K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parame-

ters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.

[105] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep

neural networks with pruning, trained quantization and hu�man coding,”

arXiv preprint arXiv:1510.00149, 2015.

[106] P. Guo, B. Hu, and W. Hu, “Mistify: Automating {DNN} model port-

ing for {On-Device} inference at the edge,” in 18th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 21), 2021, pp.

705–719.

[107] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,

Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in Pro-

ceedings of the IEEE/CVF international conference on computer vision,

2019, pp. 1314–1324.

[108] M. Tan, R. Pang, and Q. V. Le, “E�cientdet: Scalable and e�cient ob-

ject detection,” in Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, 2020, pp. 10 781–10 790.

[109] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “SphereFace: Deep

hypersphere embedding for face recognition,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2017, pp. 212–220.

[110] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu,

“CosFace: Large margin cosine loss for deep face recognition,” in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2018, pp. 5265–5274.

142

[111] J. Han and B. Bhanu, “Individual recognition using gait energy image,”

IEEE transactions on pattern analysis and machine intelligence, vol. 28,

no. 2, pp. 316–322, 2005.

[112] H. Wang, X. Bao, R. Roy Choudhury, and S. Nelakuditi, “Visually fin-

gerprinting humans without face recognition,” in Proceedings of the 13th

Annual International Conference on Mobile Systems, Applications, and

Services. ACM, 2015, pp. 345–358.

[113] J. Chauhan, Y. Hu, S. Seneviratne, A. Misra, A. Seneviratne, and Y. Lee,

“BreathPrint: Breathing acoustics-based user authentication,” in Proceed-

ings of the 15th Annual International Conference on Mobile Systems, Ap-

plications, and Services. ACM, 2017, pp. 278–291.

[114] K. R. Farrell, R. J. Mammone, and K. T. Assaleh, “Speaker recognition

using neural networks and conventional classifiers,” IEEE Transactions

on speech and audio processing, vol. 2, no. 1, pp. 194–205, 1994.

[115] Y. Zhao, S. Wu, L. Reynolds, and S. Azenkot, “A face recognition ap-

plication for people with visual impairments: Understanding use beyond

the lab,” in Proceedings of the 2018 CHI Conference on Human Factors

in Computing Systems. ACM, 2018, p. 215.

[116] S. Panchanathan, S. Chakraborty, and T. McDaniel, “Social interaction

assistant: a person-centered approach to enrich social interactions for in-

dividuals with visual impairments,” IEEE Journal of Selected Topics in

Signal Processing, vol. 10, no. 5, pp. 942–951, 2016.

[117] L. B. Neto, F. Grijalva, V. R. M. L. Maike, L. C. Martini, D. Florencio,

M. C. C. Baranauskas, A. Rocha, and S. Goldenstein, “A kinect-based

wearable face recognition system to aid visually impaired users,” IEEE

Transactions on Human-Machine Systems, vol. 47, no. 1, pp. 52–64, 2016.

143

[118] L. He, H. Li, Q. Zhang, and Z. Sun, “Dynamic feature learning for partial

face recognition,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 7054–7063.

[119] J. Lezama, Q. Qiu, and G. Sapiro, “Not afraid of the dark: NIR-VIS face

recognition via cross-spectral hallucination and low-rank embedding,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017, pp. 6628–6637.

[120] “TensorFlow-Lite Object Detection Demo,” https://www.tensorflow.org/

lite/models/object detection/overview. 15 Dec. 2019.

[121] P. Li, L. Prieto, D. Mery, and P. J. Flynn, “On low-resolution face recog-

nition in the wild: Comparisons and new techniques,” IEEE Transactions

on Information Forensics and Security, vol. 14, no. 8, pp. 2000–2012,

2019.

[122] M. B. Lewis and A. J. Edmonds, “Face detection: Mapping human per-

formance,” Perception, vol. 32, no. 8, pp. 903–920, 2003.

[123] M. Kampf, I. Nachson, and H. Babko�, “A serial test of the laterality of

familiar face recognition,” Brain and cognition, vol. 50, no. 1, pp. 35–50,

2002.

[124] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “MS-Celeb-1M: A dataset

and benchmark for large-scale face recognition,” in European Conference

on Computer Vision. Springer, 2016, pp. 87–102.

[125] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “VGGFace2:

A dataset for recognising faces across pose and age,” in 2018 13th IEEE

International Conference on Automatic Face & Gesture Recognition (FG

2018). IEEE, 2018, pp. 67–74.

144

https://www.tensorflow.org/lite/models/object_detection/overview
https://www.tensorflow.org/lite/models/object_detection/overview

[126] X. Tang, D. K. Du, Z. He, and J. Liu, “Pyramidbox: A context-assisted

single shot face detector,” in Proceedings of the European Conference on

Computer Vision (ECCV), 2018, pp. 797–813.

[127] “EyeSight Rapter AR Glass,” https://everysight.com/about-raptor/. Ac-

cessed: 15 Dec. 2019.

[128] M. Najibi, P. Samangouei, R. Chellappa, and L. S. Davis, “SSH: Single

stage headless face detector,” in Proceedings of the IEEE International

Conference on Computer Vision, 2017, pp. 4875–4884.

[129] Y. Chen, Y. Tai, X. Liu, C. Shen, and J. Yang, “FSRNet: End-to-end

learning face super-resolution with facial priors,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2018,

pp. 2492–2501.

[130] R. Zhang, “Making convolutional networks shift-invariant again,” Inter-

national Conference on Machine Learning (ICML), 2019.

[131] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep resid-

ual networks for single image super-resolution,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Work-

shops, 2017, pp. 136–144.

[132] N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and lightweight super-

resolution with cascading residual network,” in Proc. ECCV, 2018.

[133] A. Bulat and G. Tzimiropoulos, “Super-FAN: Integrated facial landmark

localization and super-resolution of real-world low resolution faces in ar-

bitrary poses with gans,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2018, pp. 109–117.

145

https://everysight.com/about-raptor/

[134] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in

Advances in neural information processing systems, 2014, pp. 2672–2680.

[135] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,

“Improved training of wasserstein gans,” in Advances in Neural Informa-

tion Processing Systems, 2017, pp. 5767–5777.

[136] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in 2009 IEEE conference on

computer vision and pattern recognition. IEEE, 2009, pp. 248–255.

[137] J. Canny, “A computational approach to edge detection,” in Readings in

computer vision. Elsevier, 1987, pp. 184–203.

[138] S. Chen, Y. Liu, X. Gao, and Z. Han, “MobileFaceNets: E�cient CNNs

for accurate real-time face verification on mobile devices,” in Chinese

Conference on Biometric Recognition. Springer, 2018, pp. 428–438.

[139] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces

in the wild: A database for studying face recognition in unconstrained

environments,” University of Massachusetts, Amherst, Tech. Rep. 07-49,

October 2007.

[140] M. Yuan, L. Zhang, F. He, X. Tong, and X.-Y. Li, “Infi: end-to-end learn-

able input filter for resource-e�cient mobile-centric inference,” in Proceed-

ings of the 28th Annual International Conference on Mobile Computing

And Networking, 2022, pp. 228–241.

[141] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python jit

compiler,” in Proceedings of the Second Workshop on the LLVM Compiler

Infrastructure in HPC. ACM, 2015, p. 7.

146

[142] S. Yang, P. Luo, C.-C. Loy, and X. Tang, “WIDER FACE: A face de-

tection benchmark,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 5525–5533.

[143] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for

generative adversarial networks,” arXiv preprint arXiv:1812.04948, 2018.

[144] A. Bulat and G. Tzimiropoulos, “How far are we from solving the 2d & 3d

face alignment problem?(and a dataset of 230,000 3d facial landmarks),”

in Proceedings of the IEEE International Conference on Computer Vision,

2017, pp. 1021–1030.

[145] J. Guo and H. Chao, “One-to-many network for visually pleasing com-

pression artifacts reduction,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 3038–3047.

[146] G. Lu, W. Ouyang, D. Xu, X. Zhang, Z. Gao, and M.-T. Sun, “Deep

kalman filtering network for video compression artifact reduction,” in

Proceedings of the European Conference on Computer Vision (ECCV),

2018, pp. 568–584.

[147] “Microsoft and AT&T demonstrate 5G-powered video analytics,”

https://azure.microsoft.com/en-us/blog/microsoft-and-att-demonstrate-

5gpowered-video-analytics/. Accessed: 1 Feb. 2024.

[148] M. Tan and Q. Le, “E�cientnet: Rethinking model scaling for convolu-

tional neural networks,” in International conference on machine learning.

PMLR, 2019, pp. 6105–6114.

[149] “Computing Receptive Fields of Convolutional Neural Networks,” https:

//distill.pub/2019/computing-receptive-fields/. Accessed: 1 Feb. 2024.

147

https://azure.microsoft.com/en-us/blog/microsoft-and-att-demonstrate-5gpowered-video-analytics/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-demonstrate-5gpowered-video-analytics/
https://distill.pub/2019/computing-receptive-fields/
https://distill.pub/2019/computing-receptive-fields/

[150] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the e�ective

receptive field in deep convolutional neural networks,” Advances in neural

information processing systems, vol. 29, 2016.

[151] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Analysis and de-

sign of the google congestion control for web real-time communication

(webrtc),” in Proceedings of the 7th International Conference on Multi-

media Systems, 2016, pp. 1–12.

[152] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and

C. Bonnet, “Openairinterface: A flexible platform for 5g research,” ACM

SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 33–38,

2014.

[153] “Sysmocom. 2022. Programmable SIM cards from Sysmocom.”

https://shop.sysmocom.de/sysmoISIM-SJA2-SIM-USIM-ISIM-Card-

10-pack-with-ADM-keys/sysmoISIM-SJA2-10p-adm. Accessed: 1 Feb.

2024.

[154] “Linux tra�c control,” https://man7.org/linux/man-pages/man8/tc.8.

html. Accessed: 1 Feb. 2024.

[155] “EC2 on-demand vs. reserved instance pricing.” https://aws.amazon.

com/compare/the-di�erence-between-on-demand-instances-and-

reserved-instances/?nc1=h ls. Accessed: 1 Feb. 2024.

[156] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,

P. Bahl, and M. Philipose, “Videoedge: Processing camera streams using

hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge Comput-

ing (SEC). IEEE, 2018, pp. 115–131.

148

https://shop.sysmocom.de/sysmoISIM-SJA2-SIM-USIM-ISIM-Card-10-pack-with-ADM-keys/sysmoISIM-SJA2-10p-adm
https://shop.sysmocom.de/sysmoISIM-SJA2-SIM-USIM-ISIM-Card-10-pack-with-ADM-keys/sysmoISIM-SJA2-10p-adm
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://aws.amazon.com/compare/the-difference-between-on-demand-instances-and-reserved-instances/?nc1=h_ls
https://aws.amazon.com/compare/the-difference-between-on-demand-instances-and-reserved-instances/?nc1=h_ls
https://aws.amazon.com/compare/the-difference-between-on-demand-instances-and-reserved-instances/?nc1=h_ls

[157] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Dar-

rell, “Bdd100k: A diverse driving video database with scalable annotation

tooling,” arXiv preprint arXiv:1805.04687, vol. 2, no. 5, p. 6, 2018.

[158] “AT&T Cell Phone Plans,” https://www.att.com/5g/consumer/. Ac-

cessed: 1 Feb. 2024.

[159] “T-Mobile Cell Phone Plans,” https://www.t-mobile.com/cell-phone-

plans. Accessed: 1 Feb. 2024.

[160] “Google Cloud Pricing,” https://cloud.google.com/compute/gpus-

pricing. Accessed: 1 Feb. 2024.

[161] “Amazon EC2 Pricing,” https://aws.amazon.com/ko/ec2/pricing/on-

demand/. Accessed: 1 Feb. 2024.

[162] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeláez, A. Sorkine-Hornung,

and L. Van Gool, “The 2017 davis challenge on video object segmenta-

tion,” arXiv preprint arXiv:1704.00675, 2017.

[163] “A Unified Architecture for Instance and Semantic Segmentation,” http:

//presentations.cocodataset.org/COCO17-Stu�-FAIR.pdf. Accessed: 1

Feb. 2024.

[164] Y. Chen, R. Yao, H. Hassanieh, and R. Mittal, “Channel-aware 5g RAN

slicing with customizable schedulers,” in 20th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 23), 2023, pp.

1767–1782.

[165] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

International journal of computer vision, vol. 60, pp. 91–110, 2004.

[166] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust fea-

tures,” in Computer Vision–ECCV 2006: 9th European Conference on

149

https://www.att.com/5g/consumer/
https://www.t-mobile.com/cell-phone-plans
https://www.t-mobile.com/cell-phone-plans
https://cloud.google.com/compute/gpus-pricing
https://cloud.google.com/compute/gpus-pricing
https://aws.amazon.com/ko/ec2/pricing/on-demand/
https://aws.amazon.com/ko/ec2/pricing/on-demand/
http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf
http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf

Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9.

Springer, 2006, pp. 404–417.

[167] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vigfusson,

and J. Mace, “Serving DNNs like clockwork: Performance predictability

from the bottom up,” in 14th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 20), 2020, pp. 443–462.

[168] A. Kirillov, K. He, R. Girshick, and P. Dollár, “A unified architecture for

instance and semantic segmentation,” 2017.

[169] X. Xie, X. Zhang, S. Kumar, and L. E. Li, “pistream: Physical layer

informed adaptive video streaming over lte,” in Proceedings of the 21st

Annual International Conference on Mobile Computing and Networking,

2015, pp. 413–425.

[170] X. Xie, X. Zhang, and S. Zhu, “Accelerating mobile web loading using

cellular link information,” in Proceedings of the 15th Annual International

Conference on Mobile Systems, Applications, and Services, 2017, pp. 427–

439.

[171] Y. Xie, F. Yi, and K. Jamieson, “Pbe-cc: Congestion control via endpoint-

centric, physical-layer bandwidth measurements,” in Proceedings of the

Annual conference of the ACM Special Interest Group on Data Commu-

nication on the applications, technologies, architectures, and protocols for

computer communication, 2020, pp. 451–464.

[172] “Open-RAN Alliance,” https://www.o-ran.org/. Accessed: 1 Feb. 2024.

[173] W.-H. Ko, U. Dinesha, U. Ghosh, S. Shakkottai, D. Bharadia, and R. Wu,

“EdgeRIC: Empowering realtime intelligent optimization and control in

nextg networks,” arXiv preprint arXiv:2304.11199, 2023.

150

https://www.o-ran.org/

[174] R. Schmidt, M. Irazabal, and N. Nikaein, “Flexric: an sdk for next-

generation sd-rans,” in Proceedings of the 17th International Conference

on emerging Networking EXperiments and Technologies, 2021, pp. 411–

425.

[175] “Architecture & E2 General Aspects and Principles. Technical Specifica-

tion O-RAN.WG3.E2GAP-v01.01. O-RAN Working Group 3.”

[176] “O-RAN Working Group 3, “O-RAN Near-Real-time RAN Intelligent

Controller E2 Service Model (E2SM) KPM 4.0,” ORAN-WG3.E2SM-

KPM-v04.00 Technical Specification, October 2023.”

[177] X. Foukas, B. Radunovic, M. Balkwill, Z. Lai, and C. Settle, “Pro-

grammable ran platform for flexible real-time control and telemetry,” in

Proceedings of the 29th Annual International Conference on Mobile Com-

puting and Networking, 2023, pp. 1–3.

[178] “Microsoft programmable RAN platform with dynamic service mod-

els,” https://azure.microsoft.com/en-us/resources/research/microsoft-

programmable-ran-platform-with-dynamic-service-models. Accessed: 1

Feb. 2024.

[179] T.-W. Chin, R. Ding, and D. Marculescu, “Adascale: Towards real-time

video object detection using adaptive scaling,” Proceedings of machine

learning and systems, vol. 1, pp. 431–441, 2019.

[180] A. Chaurasia and E. Culurciello, “Linknet: Exploiting encoder represen-

tations for e�cient semantic segmentation,” in 2017 IEEE Visual Com-

munications and Image Processing (VCIP). IEEE, 2017, pp. 1–4.

[181] “FFMPEG,” https://�mpeg.org//. Accessed: 1 Feb. 2024.

151

https://azure.microsoft.com/en-us/resources/research/microsoft-programmable-ran-platform-with-dynamic-service-models
https://azure.microsoft.com/en-us/resources/research/microsoft-programmable-ran-platform-with-dynamic-service-models
https://ffmpeg.org//

[182] “Secure Reliable Transport (SRT) Protocol,” https://github.com/

Haivision/srt. Accessed: 1 Feb. 2024.

[183] “CppFlow,” https://github.com/serizba/cppflow. Accessed: 1 Feb. 2024.

[184] “PyTorch,” https://pytorch.org/. Accessed: 1 Feb. 2024.

[185] “OpenCV,” https://opencv.org/. Accessed: 1 Feb. 2024.

[186] J. Kim, Y. Lee, H. Lim, Y. Jung, S. M. Kim, and D. Han, “Outran:

co-optimizing for flow completion time in radio access network,” in Pro-

ceedings of the 18th International Conference on emerging Networking

EXperiments and Technologies, 2022, pp. 369–385.

[187] “OAI-5G RF Simulator,” https://gitlab.eurecom.fr/oai/

openairinterface5g/-/tree/develop/radio/rfsimulator?ref type=heads.

Accessed: 1 Feb. 2024.

[188] “Google Cloud Serverless Computing,” https://cloud.google.com/

serverless?hl=en. Accessed: 1 Feb. 2024.

[189] “AWS Lambda Serverless Computing,” https://aws.amazon.com/ko/

lambda/pricing/. Accessed: 1 Feb. 2024.

[190] K. Zhang, B. He, J. Hu, Z. Wang, B. Hua, J. Meng, and L. Yang, “G-NET:

E�ective GPU sharing in NFV systems,” in 15th USENIX Symposium on

Networked Systems Design and Implementation NSDI 18), 2018, pp. 187–

200.

[191] G. Wang, Y. Lin, and W. Yi, “Kernel fusion: An e�ective method for

better power e�ciency on multithreaded gpu,” in 2010 IEEE/ACM Int’l

Conference on Green Computing and Communications & Int’l Conference

on Cyber, Physical and Social Computing. IEEE, 2010, pp. 344–350.

152

https://github.com/Haivision/srt
https://github.com/Haivision/srt
https://github.com/serizba/cppflow
https://pytorch.org/
https://opencv.org/
https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/develop/radio/rfsimulator?ref_type=heads
https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/develop/radio/rfsimulator?ref_type=heads
https://cloud.google.com/serverless?hl=en
https://cloud.google.com/serverless?hl=en
https://aws.amazon.com/ko/lambda/pricing/
https://aws.amazon.com/ko/lambda/pricing/

[192] J. Lee, N. Chirkov, E. Ignasheva, Y. Pisarchyk, M. Shieh, F. Riccardi,

R. Sarokin, A. Kulik, and M. Grundmann, “On-device neural net inference

with mobile gpus,” arXiv preprint arXiv:1907.01989, 2019.

[193] “NVIDIA’s next generation CUDA compute architecture: Kepler GK110,

2012.” https://www.nvidia.com/content/dam/en-zz/Solutions/Data-

Center/documents/NVIDIA-Kepler-GK110-GK210-Architecture-

Whitepaper.pdf. Accessed: 25 Mar. 2020.

[194] M. Guevara, C. Gregg, K. Hazelwood, and K. Skadron, “Enabling task

parallelism in the CUDA scheduler,” in Workshop on Programming Mod-

els for Emerging Architectures, vol. 9. Citeseer, 2009.

[195] “Snapdragon 845: Immersing you in a brave new world of

XR.” https://www.qualcomm.com/news/onq/2018/01/18/snapdragon-

845-immersing-you-brave-new-world-xr. Accessed: 25 Mar. 2020.

[196] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality

assessment: from error visibility to structural similarity,” IEEE transac-

tions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[197] C. Hwang, S. Pushp, C. Koh, J. Yoon, Y. Liu, S. Choi, and J. Song,

“RAVEN: Perception-aware optimization of power consumption for mo-

bile games,” in Proceedings of the 23rd Annual International Conference

on Mobile Computing and Networking. ACM, 2017, pp. 422–434.

[198] “XiaoMi Mobile AI Compute Engine (MACE) model zoo,” https://

github.com/XiaoMi/mace-models. Accessed: 25 Mar. 2020.

[199] S. Zafeiriou, G. Tzimiropoulos, and M. Pantic, “The 300 videos in the

wild (300-VW) facial landmark tracking in-the-wild challenge,” in ICCV

Workshop, vol. 32, 2015, p. 73.

153

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.qualcomm.com/news/onq/2018/01/18/snapdragon-845-immersing-you-brave-new-world-xr
https://www.qualcomm.com/news/onq/2018/01/18/snapdragon-845-immersing-you-brave-new-world-xr
https://github.com/XiaoMi/mace-models
https://github.com/XiaoMi/mace-models

[200] “Qualcomm Snapdragon Profiler,” https://developer.qualcomm.com/

software/snapdragon-profiler. Accessed: 25 Mar. 2020.

[201] T. Jin, S. He, and Y. Liu, “Towards accurate GPU power modeling for

smartphones,” in Proceedings of the 2nd Workshop on Mobile Gaming,

2015, pp. 7–11.

[202] J. J. Kang and S. Adibi, “Bushfire disaster monitoring system using low

power wide area networks (lpwan),” Technologies, vol. 5, no. 4, p. 65,

2017.

[203] A. Aijaz, “Private 5g: The future of industrial wireless,” IEEE Industrial

Electronics Magazine, vol. 14, no. 4, pp. 136–145, 2020.

[204] M. Wen, Q. Li, K. J. Kim, D. López-Pérez, O. A. Dobre, H. V. Poor,

P. Popovski, and T. A. Tsiftsis, “Private 5g networks: concepts, architec-

tures, and research landscape,” IEEE Journal of Selected Topics in Signal

Processing, vol. 16, no. 1, pp. 7–25, 2021.

[205] “NVIDIA CUDA on Arm,” https://developer.nvidia.com/cuda-toolkit/

arm. Accessed: 25 Mar. 2020.

[206] “NVIDIA Tesla P100, 2016.” https://images.nvidia.com/content/pdf/

tesla/whitepaper/pascal-architecture-whitepaper.pdf. Accessed: 25 Mar.

2020.

[207] “R. Smith and Anandtech. Preemption improved: Fine-grained pre-

emption for time-critical tasks, 2016.” http://www.anandtech.com/

show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-

review/10. Accessed: 25 Mar. 2020.

[208] “Google Edge TPU,” https://cloud.google.com/edge-tpu?hl=en. Ac-

cessed: 25 Mar. 2020.

154

https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.nvidia.com/cuda-toolkit/arm
https://developer.nvidia.com/cuda-toolkit/arm
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://www.anandtech.com/show/10325/%20the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10
http://www.anandtech.com/show/10325/%20the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10
http://www.anandtech.com/show/10325/%20the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10
https://cloud.google.com/edge-tpu?hl=en

[209] “Huawei Kirin SoC with NPU,” http://www.hisilicon.com/en/Products/

ProductList/Kirin. Accessed: 25 Mar. 2020.

[210] M. Han and W. Baek, “Herti: A reinforcement learning-augmented system

for e�cient real-time inference on heterogeneous embedded systems,” in

2021 30th International Conference on Parallel Architectures and Com-

pilation Techniques (PACT). IEEE, 2021, pp. 90–102.

[211] J. S. Jeong, J. Lee, D. Kim, C. Jeon, C. Jeong, Y. Lee, and B.-G. Chun,

“Band: coordinated multi-dnn inference on heterogeneous mobile proces-

sors,” in Proceedings of the 20th Annual International Conference on Mo-

bile Systems, Applications and Services, 2022, pp. 235–247.

[212] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, and C. Schmid,

“Vivit: A video vision transformer,” in Proceedings of the IEEE/CVF

international conference on computer vision, 2021, pp. 6836–6846.

[213] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-

terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An

image is worth 16x16 words: Transformers for image recognition at scale,”

arXiv preprint arXiv:2010.11929, 2020.

[214] K. Lee, J. Yi, Y. Lee, S. Choi, and Y. M. Kim, “Groot: a real-time stream-

ing system of high-fidelity volumetric videos,” in Proceedings of the 26th

Annual International Conference on Mobile Computing and Networking,

2020, pp. 1–14.

[215] Z. Tan, J. Zhao, Y. Li, Y. Xu, and S. Lu, “{Device-Based}{LTE} la-

tency reduction at the application layer,” in 18th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 21), 2021, pp.

471–486.

155

http://www.hisilicon.com/en/Products/ProductList/Kirin
http://www.hisilicon.com/en/Products/ProductList/Kirin

[216] Y. Lin, Z. Zhang, H. Tang, H. Wang, and S. Han, “Pointacc: E�cient point

cloud accelerator,” in MICRO-54: 54th Annual IEEE/ACM International

Symposium on Microarchitecture, 2021, pp. 449–461.

156

�]

‰‹⌅ D$ Ñ�@ Pµ ®»0¡, ⇣‹, ⌧x ›ƒ ✏ AR/MR Ò ‰ë\

 ©\ ⌧D§X uÏt ⇠î 0 t‰. X¿Ã, �tX‡ ®(�x ‰‹⌅ D

$ Ñ� ‹§\D êx Xîp–î Œ@ ¥$¿t 0x‰. uÏ 8⌧î ê–

\��x ®| 00–⌧ D$ §∏ºD ‰‹⌅<\ ��à Ñ�X‡, Ñ� ∞

¸| ¨©ê–å ⌅Ï ✏ ¡8 ë©D �•Xå Xî Ét‰. πà, t| ⌅t⌧î

‡t¡ƒ D$– ‰⇠X Ï5 ‡Ω› (DNNs)D ç�<\, Ÿ‹– ‰ât|

\‰. ¯ |8–⌧î MR, ê(¸â Ò ¯ò� ‰‹⌅ D$ Ñ� Q©X Ãl\

‹| π’”‡, t˘ Ãl\‹| ¿–X0 ⌅\ „¿-t|∞‹ ⌘%� �´¸D

$ƒ\‰. l¥�<\ „¿, $∏Ãl, t|∞‹| D∞tî ‘‹-,-‘‹ \�T

| ⇠âXÏ ë≈D ‰‹⌅ ò¨…, Æ@ ⌅�Ñ ¿ ‹⌅ ✏ í@ �Uƒ 1•D

¿–\‰.

<�, ¯ |8–⌧î <°\ ƒ‹ ı⌅–⌧ �¡ ¨å(�: ‰Ö DŸ, ƒ¸ ⌘

xîx)D‰‹⌅<\î�Xî AR‹§\ EagleEye|êx\‰.ºt›ƒ@

‰ ‡t¡ƒ D$ ⌅�Ñ»‰ ı°\ DNNX ‹�§X ⇠ı� ⇠âD îlX

Ï, ê– \��x ®| 00–⌧ ‰‹⌅ ⇠ât ‰∞ ¥5‰. EagleEyeX uÏ

0 @ XP �Q� —, ‰â<\, ºt t¡ƒ, ê8 Ò x› útƒ– 0|

‰⌘ DNN ºt ›ƒ �t⌅|xD �Q�<\ p�X‡, t| ®| ✏ t|∞

‹X t0Ö ⌅\8⌧| ⌘%�<\ \©XÏ ‰‹⌅ ⇠âXî 0 t‰. ⇣\,

¯ |8–⌧î �¡X �‹ ºt t¯¿| \©XÏ �t¡ƒ\ °ò⌧ ºt–⌧

ºtX 8Ä �Ù| ı–XÏ �U\ x›D �•Xå Xî »\¥ ICN ✏ ¯ Y

µ)ï`D êxx\‰. ‰ë\ ‰XΩ 1• …� ∞¸, ICNt �t¡ƒ ºt

157

x› �Uƒ| lå •¡‹§p, ‰ 1080p D$ ⌅�Ñ ˘ 108 kBX pt0|

⌅°Ã<\ ⌅�Ñ ¿ ‹⌅D \� 9.070 �çTXî ÉD ÄùX�‰.

‰L<\, ¯ |8–⌧î $∏Ãl-ÙË∏ ıŸ §�⌅¡D µ\ ‘‹-,-‘

‹ ‰‹⌅ D$ Ñ� ‹§\ PendulumD êx\‰. D$ Ñ� ‹§\@

Ÿ�x D$ XP @ �© ê– ¿Ÿ<\ xt $∏Ãl(D$ §∏¨�) ✏

ÙË∏(DNNî`)Ëƒ–⌧Xê–—©tı°\(4<\à�D⌧›\‰.X

¿Ã,0t‹§\@$∏Ãl⇣îÙË∏Ë|§�⌅¡–\�⇠¥,¿‹⌅/

�Uƒ1•�X✏¨å§≠D8⌧|™î‰.tÏ\\ƒ|˘ıX0⌅t,¯

|8–⌧î D$ D∏�t∏@ DNN ®x l0 ⌅X ∏�t‹$⌅ �ƒ| »

må ⌧¨\‰. t| \©XÏ, (i) ®(�t‡ U• �•\ $∏Ãl-ÙË∏ ıŸ

§�⌅¡ T‰»ò, (ii) Ω… ∏�t‹$⌅ ⌅\�|Ï ✏ (iii) ‰⌘ ¨©ê ıŸ

ê– §�⌅Ï\ l1⌧ ‘‹-,-‘‹ ‹§\D êx\‰. ‰ë\ pt0K ✏

\‡ DNN– �\ ‰ÿ ∞¸, Pendulumt \‡ Ë| §�⌅¡ ‹§\ �D \�

0.64 mIoU •¡ ✏ 1.290 í@ ò¨…D Ï1Xî ÉD ÄùX�‰.

»¿…<\,¯|8–⌧î®|GPU–⌧‰⌘ DNN✏�T¡Ÿ‹⇠âD

¿–Xî ®| �´¸ HeimdallD êx\‰. 0t ®| %Ï› ⌅�ÑÃl

îê–Ω¡t∆îXΩ–⌧Ë| DNN‰âD��X‡$ƒ⇠¥,‰⌘ DNN✏

�T¡ Ÿ‹ ⇠â ‹ Ï�\ 1• �X| ™î‰(�: î` ¿t 59.93–⌧ 1181

ms\ ù�, �T¡ ⌅�Ñ çƒ� 30–⌧ 12 fps\ ⇣å). ‰⌘ ë≈ §�⌅¡@

p§l± GPU–�t\⌧àl⇠»¿Ã,®| GPU–⌧î⌧\⌧D§Mò

¿– ✏ T®¨ �ÌÌ<\ xt �©t ¥5‰. t| t∞X0 ⌅t, ∞¨î ¨

 ⇣ T‰»òD êxXÏ DNND �T¡ ¿ ‹⌅D ‡$XÏ ë@ Ë⌅\

Ñ`X‡, Ÿ‹ ⇠â⇠î GPU ⇠âë≈ ⌅ ∞ ⌧⌅| ¿�X‡ Q© îl¨m

D ‡$XÏ Ÿ�<\ §�⌅¡\‰. ‰ë\ MR Q© ‹ò¨$– �\ 1• …�

∞¸, Heimdall@ DNN î` ¿ ‹⌅D 0tX @ §�) ⌘¸– Dt } 15

0 ⇣å‹§p, ⌅�Ñ çƒ| 11.99–⌧ 29.96 fps\ •¡§î ÉD ÄùX�‰.

158

¸î¥: ‰‹⌅ D$ Ñ�, „¿-t|∞‹ ⌘%� ‹§\, ®|/„¿ AI

Yà: 2020-39481

159

	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation and Challenges
	Proposed Edge-Cloud Cooperative Platform
	Design Goals
	Platform Architecture
	Key Solutions

	Contributions
	Dissertation Overview

	Motivational Studies
	Applications and Requirements
	Application Scenarios
	Workload Characterization

	Challenges
	Complexity of the State-of-the-art DNNs
	Large Data Size and Compute of Each Analysis Task
	Alternating Resource Bottleneck from Dynamic Resource Availability and Workload
	Multi-Task Resource Contention

	Related Work
	Live Video Analytics Applications
	On-Device Systems
	Mobile Deep Learning Frameworks
	On-Device Continuous Mobile Vision

	Cloud Offloading Systems
	Offloading for Continuous Mobile Vision
	Adaptive Bitrate for Live Video Analytics
	ML Serving in Edge/Cloud Server
	Edge-Cloud cooperative Inference Systems

	Tiny ML/Efficient Deep Learning

	EagleEye: AR-based Person Identification in Crowded Urban Spaces
	Introduction
	Motivating Scenarios
	Preliminary Studies
	How Fast Can Humans Identify Faces?
	How Accurate Can DNNs Identify Faces?
	How Fast Can DNNs Identify Faces?
	Summary

	EagleEye: System Overview
	Design Considerations
	Operational Flow

	Identity Clarification-Enabled Face Identification Pipeline
	Face Detection
	Identity Clarification Network
	Face Recognition and Service Provision

	Real-Time Multi-DNN Execution
	Workload Characterization
	Content-Adaptive Parallel Execution

	Implementation
	Evaluation
	Experiment Setup
	Performance Overview
	Identity Clarification Network
	Content-Adaptive Parallel Execution
	Performance for Varying Crowdedness
	Performance on Other Mobile Devices

	Pendulum: Network-Compute Joint Scheduling for Efficient and Accurate Live Video Analytics
	Introduction
	Limitations of Prior Works
	Limitations of Single-Stage Scheduling
	Why Simple Combination of Two Schedulers Fails?

	Our Approach
	Goals
	Key Idea: Joint Scheduling
	Why is Joint Scheduling Possible?
	Joint Scheduling Problem Formulation

	Design Overview
	Challenges
	Key Ideas
	System Architecture

	Joint Scheduling Mechanism
	Network-Compute Demand Profiler
	Resource Availability Monitor
	Joint Scheduling Knob Controller

	Joint Scheduling Algorithm
	Evaluation
	End-to-End Improvement
	Joint Scheduling on SOTA Systems
	Performance on Various App Settings
	Performance in Compute Bottleneck
	Microbenchmarks

	Heimdall: Mobile GPU Coordination Platform for AR Applications
	Introduction
	Analysis on GPU Contention
	Heimdall System Overview
	Approach
	Design Considerations
	System Architecture

	Preemption-Enabling DNN Analyzer
	Overview
	Latency Profiling
	DNN Partitioning

	Pseudo-Preemptive GPU Coordinator
	Overview
	Utility Function
	Scheduling Problem and Policy
	Greedy Scheduling Algorithm

	Additional Optimizations
	Preprocessing and postprocessing
	CPU Fallback Operators

	Implementation
	Evaluation
	Experiment Setup
	Performance Overview
	DNN Partitioning/Coordination Overhead
	Pseudo-Preemptive GPU Coordinator
	Performance for Various App Scenarios
	DNN Accuracy
	Energy Consumption Overhead

	Conclusion
	Summary
	Discussion
	Scalability and Generality of EagleEye to Other Workloads
	Generality of Pendulum to Wider Network and System Environments
	Impact of Hardware Evolution on Heimdall

	Future Projection: Would the Importance of System Optimization Persist?
	DNN complexity increase vs. hardware evolution
	Video bitrate increase vs. network evolution

	Future Works
	System Support for 3D Point Cloud Videos
	App-RAN Cross-Layer Optimization

	Abstract (In Korean)

