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Abstract

Live video analytics enables various services including traffic monitoring, surveil-

lance, person identification, and AR/MR. Despite the huge potential, enabling robust

and efficient live video analytics apps is non-trivial. The core challenge lies in running

the unique workload of analyzing the live video stream in real-time and seamlessly

delivering the analysis results to the user for interaction on resource-constrained mo-

bile devices. Such workload often requires a continuous and simultaneous execution

of multiple Deep Neural Network (DNN) tasks on high-resolution video streams.

In this dissertation, we depict emerging live video analytics app scenarios and

thoroughly characterize their workloads. We then analyze the technical challenges in

supporting them, and introduce our research vision and systems to develop an end-to-

end, edge-cloud cooperative platform for live video analytics apps.

We first design EagleEye, an AR system to identify missing person(s) in large,

crowded urban spaces in real-time. Our key approach is Content-Adaptive Parallel Ex-

ecution, which adapts the multi-DNN face identification pipeline depending on recog-

nition difficulty (e.g., face resolution, pose) and cooperatively execute the workload at

low latency using heterogeneous processors on mobile and cloud. To further innovate

the performance of the state-of-the-art face identification techniques for LR faces, we

also design a novel ICN and its training methodology that utilize the probes of the

target to recover missing facial details in the LR faces for accurate recognition. Our

results show that ICN significantly enhances LR face recognition accuracy (true pos-

itive by 78% with only 14% false positive), and EagleEye accelerates the latency by

9.07× with only 108 KBytes of data offloaded to the cloud.

We next design Pendulum, an end-to-end live video analytics system with network-

compute joint scheduling. To overcome the limitations of single-stage scheduling sys-

tems for cloud offloading (e.g., bitrate adaptation for live video analytics, DNN schedul-
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ing in edge/cloud server) in alternating resource bottleneck scenarios, we newly dis-

cover the tradeoff relationship between the video bitrate and DNN complexity. Lever-

aging this, we design an end-to-end system composed of (i) an efficient and scalable

knob control mechanism, (ii) a lightweight tradeoff profiler, and (iii) a multi-user joint

resource scheduler. Extensive evaluation on various datasets and state-of-the-art DNNs

show that shows that Pendulum achieves up to 0.64 mIoU gain (from 0.17 to 0.81) and

1.29× higher throughput compared to state-of-the-art single-stage scheduling systems.

Finally, we design Heimdall, a mobile platform to support multi-DNN and ren-

dering concurrency on mobile GPUs. To coordinate multi-DNN and rendering tasks,

the Preemption-Enabling DNN Analyzer partitions the DNNs into smaller units (at

operator-level) to enable fine-grained GPU time-sharing with minimal DNN inference

latency overhead. Furthermore, the Pseudo-Preemptive GPU Coordinator flexibly pri-

oritizes and schedules the multi-DNN and rendering tasks on GPU and CPU to satisfy

the app requirements. Heimdall efficiently supports multiple MR app scenarios, en-

hancing the frame rate from 11.99 to 29.96 fps while reducing the worst-case DNN

inference latency by up to ≈15 times compared to the baseline multi-threading ap-

proach.

keywords: Live video analytics, Edge-cloud cooperation, Mobile/edge AI

student number: 2020-39481

ii



Contents

Abstract i

Contents iii

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Statement and Design Goals . . . . . . . . . . . . . . . . . 3

1.3 Proposed Platform Overview . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . 5

2 Motivational Studies 6

2.1 Applications and Requirements . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Application Scenarios . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Workload Characterization . . . . . . . . . . . . . . . . . . . 7

2.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Complexity of the State-of-the-art DNNs . . . . . . . . . . . 8

2.2.2 Large Data Size and Compute . . . . . . . . . . . . . . . . . 10

2.2.3 Dynamic Resource Availability and Workload . . . . . . . . . 11

2.2.4 Multi-Task Resource Contention . . . . . . . . . . . . . . . . 13

iii



3 Related Work 16

3.1 Live Video Analytics Applications . . . . . . . . . . . . . . . . . . . 16

3.2 On-Device Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Mobile Deep Learning Frameworks . . . . . . . . . . . . . . 16

3.2.2 On-Device Continuous Mobile Vision . . . . . . . . . . . . . 17

3.3 Cloud Offloading Systems . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Offloading for Continuous Mobile Vision . . . . . . . . . . . 17

3.3.2 Adaptive Bitrate for Live Video Analytics . . . . . . . . . . . 18

3.3.3 ML Serving in Edge/Cloud Server . . . . . . . . . . . . . . . 18

3.3.4 Edge-Cloud Collaborative Inference Systems . . . . . . . . . 18

3.4 Tiny ML/Efficient Deep Learning . . . . . . . . . . . . . . . . . . . 19

4 EagleEye: AR-based Person Identification in Crowded Urban Spaces 20

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Motivating Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Preliminary Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 How Fast Can Humans Identify Faces? . . . . . . . . . . . . 25

4.3.2 How Accurate Can DNNs Identify Faces? . . . . . . . . . . . 27

4.3.3 How Fast Can DNNs Identify Faces? . . . . . . . . . . . . . 29

4.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 EagleEye: System Overview . . . . . . . . . . . . . . . . . . . . . . 30

4.4.1 Design Considerations . . . . . . . . . . . . . . . . . . . . . 30

4.4.2 Operational Flow . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Identity Clarification-Enabled Face Identification Pipeline . . . . . . 32

4.5.1 Face Detection . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.2 Identity Clarification Network . . . . . . . . . . . . . . . . . 33

4.5.3 Face Recognition and Service Provision . . . . . . . . . . . . 37

4.6 Real-Time Multi-DNN Execution . . . . . . . . . . . . . . . . . . . 37

4.6.1 Workload Characterization . . . . . . . . . . . . . . . . . . . 38

iv



4.6.2 Content-Adaptive Parallel Execution . . . . . . . . . . . . . . 38

4.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8.2 Performance Overview . . . . . . . . . . . . . . . . . . . . . 46

4.8.3 Identity Clarification Network . . . . . . . . . . . . . . . . . 47

4.8.4 Content-Adaptive Parallel Execution . . . . . . . . . . . . . . 48

4.8.5 Performance for Varying Crowdedness . . . . . . . . . . . . 50

4.8.6 Performance on Other Mobile Devices . . . . . . . . . . . . . 51

5 Pendulum: Network-Compute Joint Scheduling for Scalable Live Video

Analytics 52

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Target Scenarios and System Goals . . . . . . . . . . . . . . 56

5.2.2 Limitations of Single-Stage Scheduling . . . . . . . . . . . . 57

5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Key Idea: Joint Scheduling . . . . . . . . . . . . . . . . . . . 58

5.3.2 Why is Joint Scheduling Possible? . . . . . . . . . . . . . . . 59

5.3.3 Generality of Joint Scheduling . . . . . . . . . . . . . . . . . 61

5.4 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Joint Scheduling Mechanism . . . . . . . . . . . . . . . . . . . . . . 63

5.5.1 Joint Scheduling Knob Selection . . . . . . . . . . . . . . . . 63

5.5.2 Network-Compute Tradeoff Profiler . . . . . . . . . . . . . . 66

5.5.3 Resource Availability Estimator . . . . . . . . . . . . . . . . 69

5.5.4 Other Design Considerations . . . . . . . . . . . . . . . . . . 69

5.6 Multi-User Joint Scheduling . . . . . . . . . . . . . . . . . . . . . . 71

5.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6.2 Scheduling Problem Formulation . . . . . . . . . . . . . . . 72

v



5.6.3 Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . 73

5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7.2 End-to-End Improvement . . . . . . . . . . . . . . . . . . . 76

5.7.3 Joint Scheduling on SOTA Systems . . . . . . . . . . . . . . 77

5.7.4 Performance on Other Models & Tasks . . . . . . . . . . . . 77

5.7.5 Performance in Compute Bottleneck . . . . . . . . . . . . . . 78

5.7.6 System Microbenchmarks . . . . . . . . . . . . . . . . . . . 79

6 Heimdall: Mobile GPU Coordination Platform for AR Applications 82

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Analysis on GPU Contention . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Heimdall System Overview . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.2 Design Considerations . . . . . . . . . . . . . . . . . . . . . 89

6.3.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Preemption-Enabling DNN Analyzer . . . . . . . . . . . . . . . . . . 91

6.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.2 Latency Profiling . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.3 DNN Partitioning . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Pseudo-Preemptive GPU Coordinator . . . . . . . . . . . . . . . . . 94

6.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5.2 Utility Function . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5.3 Scheduling Problem and Policy . . . . . . . . . . . . . . . . 96

6.5.4 Greedy Scheduling Algorithm . . . . . . . . . . . . . . . . . 98

6.6 Additional Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6.1 Preprocessing and postprocessing . . . . . . . . . . . . . . . 99

6.6.2 CPU Fallback Operators . . . . . . . . . . . . . . . . . . . . 100

6.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vi



6.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.8.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . 101

6.8.2 Performance Overview . . . . . . . . . . . . . . . . . . . . . 102

6.8.3 DNN Partitioning/Coordination Overhead . . . . . . . . . . . 103

6.8.4 Pseudo-Preemptive GPU Coordinator . . . . . . . . . . . . . 104

6.8.5 Performance for Various App Scenarios . . . . . . . . . . . . 105

6.8.6 DNN Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.8.7 Energy Consumption Overhead . . . . . . . . . . . . . . . . 107

7 Conclusion 108

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.1 Extension to Other Workloads . . . . . . . . . . . . . . . . . 109

7.2.2 Robustness to Wider Network and System Environments . . . 110

7.2.3 Impact of Hardware Evolution . . . . . . . . . . . . . . . . . 110

7.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3.1 Joint Scheduling Extension to App-RAN Cross-Layer Control 111

7.3.2 System Support for 3D Point Cloud Videos . . . . . . . . . . 112

Abstract (In Korean) 140

감사의글 142

vii



List of Tables

1.1 Challenges and our solutions. . . . . . . . . . . . . . . . . . . . . . . 4

2.1 DNN and rendering requirements for the example MR app scenarios. . 8

2.2 DNNs for the above MR apps. Inference time is measured on MACE

over LG V50 (Adreno 640 GPU). . . . . . . . . . . . . . . . . . . . 9

2.3 Complexity comparison between state-of-the-art DNNs and backbones. 10

4.1 Inference time of DNNs with TensorFlow-Lite running on LG V50

(Qualcomm Adreno 640 GPU). . . . . . . . . . . . . . . . . . . . . . 29

4.2 Complexity and latency of component DNNs. FLOPs are measured

with tf.profiler.profile() function. . . . . . . . . . . . . . . . . . . . . 29

4.3 Average and standard deviation of the composition of each face type

in the test dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Applicability of joint scheduling in state-of-the-art single-stage schedul-

ing systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Datasets for evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 Face detection and person segmentation accuracy (IoU) for the AR

emoji scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

viii



List of Figures

1.1 Live video analytics application scenarios. . . . . . . . . . . . . . . . 2

1.2 Edge-cloud cooperative platform architecture. . . . . . . . . . . . . . 4

2.1 Offloading latency of multi-DNN face identification pipeline. . . . . . 10

2.2 Example bottleneck timelines (colored red). . . . . . . . . . . . . . . 12

2.3 Multi-DNN GPU contention. . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Rendering-DNN GPU contention on MACE over LG V50 (immersive

online shopping scenario). . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Rendering-DNN GPU contention on TF-Lite over Google Pixel 3 XL

(criminal chasing scenario). . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Example usage scenario of EagleEye: parent finding a missing child.

More examples in Chapter 4.2. . . . . . . . . . . . . . . . . . . . . . 21

4.2 Multi-DNN face identification pipeline. . . . . . . . . . . . . . . . . 23

4.3 Human cognitive abilities on identifying faces in crowded scenes: re-

sponse time and accuracy. . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Face verification accuracy. . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Latency of face identification pipeline. . . . . . . . . . . . . . . . . . 28

4.6 Feature map visualization for varying resolutions (points with same

color represents same identity). . . . . . . . . . . . . . . . . . . . . . 28

4.7 Operation of EagleEye in a nutshell. . . . . . . . . . . . . . . . . . . 32

ix



4.8 EagleEye system overview. . . . . . . . . . . . . . . . . . . . . . . . 32

4.9 Identity Clarification Network: overview. . . . . . . . . . . . . . . . 33

4.10 Generator network architecture. . . . . . . . . . . . . . . . . . . . . 34

4.11 GANs reconstruct realistic faces, but fail to preserve the face identity. 35

4.12 CDF of face distances for varying resolutions. . . . . . . . . . . . . . 37

4.13 Edge-based background filtering. . . . . . . . . . . . . . . . . . . . . 39

4.14 Variation-Adaptive Face Recognition. . . . . . . . . . . . . . . . . . 40

4.15 Spatial Pipelining on heterogeneous processors. . . . . . . . . . . . . 40

4.16 In-the-wild dataset examples. . . . . . . . . . . . . . . . . . . . . . . 43

4.17 EagleEye performance overview. . . . . . . . . . . . . . . . . . . . . 46

4.18 Performance of Identity Clarification Network. . . . . . . . . . . . . 46

4.19 Feature map visualization for ICN. . . . . . . . . . . . . . . . . . . . 47

4.20 Background filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.21 Reconstruction example of ICN. . . . . . . . . . . . . . . . . . . . . 48

4.22 Example operation of Edge-Based Background Filtering. . . . . . . . 49

4.23 Performance of Variation-Adaptive Face Recognition. . . . . . . . . . 49

4.24 Spatial Pipelining performance. . . . . . . . . . . . . . . . . . . . . . 49

4.25 End-to-end latency for varying crowdedness. . . . . . . . . . . . . . 50

4.26 Latency evaluation on Google Pixel 3 XL. . . . . . . . . . . . . . . . 51

5.1 Scenario: cloudlet-based city monitoring. . . . . . . . . . . . . . . . 56

5.2 Bitrate and workload (# objects) for different scenes. . . . . . . . . . 57

5.3 Bitrate and mIoU of network-only scheduling (b: bottleneck, nb: no

bottleneck). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Joint scheduling example for network bottleneck scenario. . . . . . . 58

5.5 Illustration of the impact of the receptive field. . . . . . . . . . . . . . 58

5.6 Single-stage vs. joint scheduling comparison. . . . . . . . . . . . . . 59

5.7 Example detection results (box and confidence) for different crop sizes. 60

5.8 Detection accuracy in low-bitrate video. . . . . . . . . . . . . . . . . 60

x



5.9 Segmentation accuracy in low-bitrate video. . . . . . . . . . . . . . . 61

5.10 Pendulum system architecture. . . . . . . . . . . . . . . . . . . . . 62

5.11 Joint scheduling performance comparison for different video bitrate

knobs (resolution vs. fps vs. QP). . . . . . . . . . . . . . . . . . . . . 64

5.12 Tradeoff curves for different scenes. Blue/red points: configs above/below

the accuracy requirement, green curve: Pareto-optimal configs. . . . . 66

5.13 Motivation for weighted multi-knob accuracy interpolation. . . . . . . 68

5.14 Profiler performance comparison. . . . . . . . . . . . . . . . . . . . 68

5.15 Motivation of multi-user joint scheduling: additional bandwidth re-

quired to compensate ∆t inference latency differs depending on the

user’s tradeoff curve. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.16 Iterative Max Cost Gradient algorithm operation example (2 iterations,

CG: cost gradient). . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.17 Throughput-accuracy comparison in network bottleneck scenario. . . 76

5.18 Frame-wise latency comparison. . . . . . . . . . . . . . . . . . . . . 77

5.19 Joint scheduling on state-of-the-art systems. . . . . . . . . . . . . . . 77

5.20 Performance across various tasks & DNNs. . . . . . . . . . . . . . . 77

5.21 Performance in compute bottleneck (BDD). . . . . . . . . . . . . . . 77

5.22 Pendulum operation in compute bottleneck. . . . . . . . . . . . . . . 78

5.23 Profiler performance breakdown. . . . . . . . . . . . . . . . . . . . . 78

5.24 Performance under bandwidth fluctuation. . . . . . . . . . . . . . . . 79

5.25 Impact of profiling interval on performance. . . . . . . . . . . . . . . 79

5.26 Multi-user scheduling performance. . . . . . . . . . . . . . . . . . . 81

6.1 Multi-DNN GPU contention example. . . . . . . . . . . . . . . . . . 86

6.2 System Architecture of Heimdall. . . . . . . . . . . . . . . . . . . . 90

6.3 Operator-level latency distribution. . . . . . . . . . . . . . . . . . . . 92

6.4 Camera frame rendering latency. . . . . . . . . . . . . . . . . . . . . 92

6.5 DNN inference latency with and without camera. . . . . . . . . . . . 92

xi



6.6 DNN inference latencies for varying partition sizes. . . . . . . . . . . 92

6.7 Example DNN latency profiling result on Google Pixel 3 XL. . . . . . 93

6.8 Operation of DNN partitioning. . . . . . . . . . . . . . . . . . . . . . 93

6.9 End-to-end DNN inference pipeline example for RetinaFace detector. 100

6.10 Performance overview of Heimdall on LG V50. . . . . . . . . . . . . 102

6.11 DNN partitioning overhead. . . . . . . . . . . . . . . . . . . . . . . 103

6.12 Performance comparison of GPU coordination policies. . . . . . . . . 104

6.13 Opportunistic CPU offloading performance. . . . . . . . . . . . . . . 105

6.14 Performance of Heimdall for other AR app scenarios. . . . . . . . . . 106

xii



Chapter 1

Introduction

1.1 Motivation and Challenges

Live video analytics is an emerging class of applications (apps) which analyzes the live

video streams from mobile devices (e.g., smartphones, AR glasses, CCTVs), delivers

the analyzed results to the users, and enables real-time user interaction. It enables vari-

ous services including traffic monitoring [1], surveillance [2], person identification [3],

and AR/MR [4, 5] (refer to Chapter 2.1.1 for detailed scenarios).

Despite the potential, realizing robust and efficient live video analytics apps is

highly challenging. The core challenge lies in supporting the unique workload of ana-

lyzing the live video stream in real-time and seamlessly delivering the analysis results

to the user for interaction on resource-constrained mobile devices. Specifically, live

video analytics app has the following computational requirements. First, it needs to

accurately analyze the live video stream as well as the user behaviors (e.g., hand, gaze

movement) for interaction, which often requires a continuous and simultaneous exe-

cution of multiple Deep Neural Networks (DNNs) on high-resolution video streams

(see Table 2.1). Second, it should seamlessly synthesize and render the analysis re-

sults (e.g., bounding boxes and trajectories over the video frames, virtual objects) over

the analyzed scenes for immersive user experiences. Finally, background DNN infer-

1



(a) Criminal chasing. (b) Immersive online shopping. (c) Augmented interactive

workspace (source: [6]).

Figure 1.1: Live video analytics application scenarios.

ence computation and foreground UI rendering should be simultaneously performed

in real-time under resource constraints.

Supporting such concurrent multi-DNN and rendering workload incurs the follow-

ing technical challenges.

Large Data Size and Compute (Chapter 2.2.2). Each analysis task requires a repeti-

tive execution of multiple DNNs over high-resolution videos. For example, identifying

distant faces in criminal chasing scenario requires face detection on 1080p frame, and

face recognition per each face. Running the task in low-latency is non-trivial for both

on-device execution as well as cloud offloading: for example, it takes 8.6 and 3.4 sec-

onds for a frame with 17 faces, mainly due to large number of DNN inferences and

high network transmission latency due to large frame size.

Dynamic Resource and Workload Fluctuation (Chapter 2.2.3). The workload and

resource availability independently fluctuate both within and across the network (video

streaming) and compute (DNN inference) stages. Specifically, compute workload fluc-

tuates depending on scene complexity (e.g., number of objects). Network bandwidth

fluctuates due to user mobility and wireless channel status [7–9]. Available GPU uti-

lization also fluctuates (independently of bandwidth) due to multi-user resource con-

tention, causing inference latency slowdown [10]. The above factors fluctuate inde-

pendently of each other, causing alternating resource bottleneck patterns (e.g., Pearson

correlation coefficient -0.15, indicating a weak correlation).
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Multi-Task Resource Contention (Chapter 2.2.4). Furthermore, running multiple

DNN and rendering tasks on resource-constrained mobile devices (especially mobile

GPUs) incurs severe resource contention. For example, running 4 DNN tasks and

1080p@30 fps video frame rendering tasks concurrently increases the inference la-

tency from 59.93±3.68 to 1181±668, and drops the rendering frame rate to as low as

11.99 fps.

1.2 Research Statement and Design Goals

To tackle the aforementioned challenges, our dissertation aims to answer the following

research question: “How to collaboratively utilize edge and cloud to run the multi-

DNN and rendering workload at high throughput and low latency?” We aim to achieve

the following design goals:

• High Throughput and Low Latency. We aim at end-to-end scheduling across the

end users and analysis server for real-time video processing (e.g., 30 fps through-

put) while satisfying the app-specified accuracy requirements. We also aim at soft

real-time latency (e.g., <100 ms) so that the analysis result is delivered to users

promptly for further actions (e.g., bounding box displayed on screen for officers to

confirm).

• End-to-End Optimization. For robust performance under dynamic resource avail-

ability and workload fluctuation, we aim at end-to-end optimization across the edge

device, network, and edge/cloud server. We also aim at cross-layer optimization

across the application, framework, and OS stack.

• High Scalability. Our goal is to design a platform that is scalable across various

input video sources (e.g., RGB, RGB-D, LiDAR), analysis tasks (e.g., detection,

segmentation), and number of tasks/users.
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Figure 1.2: Edge-cloud cooperative platform architecture.

Table 1.1: Challenges and our solutions.

Challenges Approach

C#1: Large data size and compute
S#1: Content-aware adaptation and cooperative execution
(Chapter 4 - EagleEye)

C#2: Dynamic resource and workload fluctuation
S#2: Network-compute joint scheduling
(Chapter 5 - Pendulum)

C#3: Multi-task resource contention
S#3: Multi-DNN/rendering concurrency on mobile GPUs
(Chapter 6 - Heimdall)

• Minimal App Modifications. For generality, we aim to minimize app/task-specific

model re-training or additional model preparation.

1.3 Proposed Platform Overview

Figure 1.2 shows the overall architecture of our edge-cloud collaborative platform for

live video analytics apps. We realize our platform with three systems that tackles the

aforementioned challenges as summarized in Table 1.1.

Operational Flow. Given the input source video stream (e.g., camera, LiDAR) and

the app specification (video analytics pipeline, Service Level Objectives (SLOs), and

DNN models), the platform collaboratively utilizes the mobile and the server inference
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engines to run the workload. First, Content-Aware Load Distributor For the work-

load scheduled for offloading, the Task-Aware Video Encoder efficiently compresses

the video with minimal task accuracy drop. The network (video streaming) and com-

pute (DNN inference) stages of the offloading pipeline is scheduled jointly by the

QoS-Aware RB Scheduler and the Multi-User Joint Scheduler, which jointly controls

the video encoding bitrate and the inference DNN complexity depending on the net-

work/compute resource availability and input scene content profiled by the QoS-Aware

Content Profiler. Finally, the Multi-Task Dynamic Scheduler utilizes multiple mobile

processors (e.g., CPU, GPU, NPU) to schedule the executions of multi-DNN and ren-

dering tasks distributed for on-device inference.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. We characterize the workloads

of future live video analytics applications, and analyze challenges in supporting the

workload in Chapter 2. We then summarize prior works and their limitations in Chap-

ter 3. Chapters 4–6 details our systems to realize our proposed edge-cloud cooperative

platform. Finally, Chapter 7 summarizes discussion and future works.
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Chapter 2

Motivational Studies

Our dissertation mainly focuses on MR as representative apps. We first conduct mo-

tivational studies to characterize the workloads of futuristic MR apps (Chapter 2.1.1),

and analyze the core challenges in supporting the workload (Chapter 2.2).

2.1 Applications and Requirements

2.1.1 Application Scenarios

Criminal Chasing (Figure 1.1(a)). A police officer chasing a criminal in a crowded

space (e.g., shopping mall) sweeps the mobile device to take a video of the area from

distance. The mobile device processes the video stream to detect faces and find the

matching one with the criminal. Specifically, it continuously runs face detection per

scene and face recognition per each detected face. Detection results are seamlessly

overlayed on top of the camera frames and rendered on screen to narrow down a spe-

cific area to search.

Immersive Online Shopping (Figure 1.1(b)). An online shopper wearing MR glasses

positions a virtual couch in his room to see if the couch matches well before buying

it. The MR glasses analyze the room by detecting its layout and furniture, and renders

the couch in a suitable position. The user can also change the style of the couch (e.g.,
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color, texture), as well as adjust the arrangement with his hand movements. This app

requires i) running object detection and image segmentation simultaneously to analyze

the room, ii) running hand tracking and image style transfer to recognize user’s hand

movements and adjust the style of the couch, and iii) rendering the virtual couch on

the right spot seamlessly.

Augmented Interactive Workspace (Figure 1.1(c)). A student wearing MR glasses

creates an interactive workspace by combining the physical textbooks and virtual doc-

uments. When he encounters a concept he does not understand, he commands the MR

glasses to search for related documents on the web via hand gestures. The searched

documents are augmented near the textbooks. Also, the note he makes on the text-

books is recognized and saved as a digital file in his device for future edits. This app

runs hand tracking and text detection, while seamlessly rendering the virtual docu-

ments.

Other Multi-DNN MR Apps include MR emoji [11] (face detection + segmentation

+ style transfer) or surroundings monitoring for visual support [12] (object and face

detection + pose estimation).

2.1.2 Workload Characterization

Real-time, Concurrent Multi-DNN Execution. The core of MR apps is accurately

analyzing the physical world and user behavior to combine the virtual contents, which

requires running multiple DNNs concurrently (see Tables 2.1 and 2.2 for examples).

Also, such analysis needs to be continuously performed over a stream of images to

seamlessly generate and overlay the virtual contents, especially in fast-changing scenes

(e.g., criminal chasing). Moreover, DNNs need to run over high-resolution inputs for

accurate analysis (e.g., recognizing small hand-writings or distant faces requires over

720p or 1080p frames [3, 13]). These characteristics are clearly distinguished from

prior works [12,14–16] that have mostly considered running a single DNN over simple

scenes with a few main objects that can be analyzed with smaller resolution (e.g.,

7



Table 2.1: DNN and rendering requirements for the example MR app scenarios.

Criminal chasing
Immersive online

shopping
Augmented interactive

workspace MR emoji

Continuously
executed

DNNs (fps)

- Face detection [17]
- Face recognition [18]

(< 1s per scene)

- Image segmentation [19]
(1-5 fps)

- Object detection [20]
(1-5 fps)

- Hand tracking [21]
(1-10 fps)

- Text detection [13]
(1-5 fps)

- Hand tracking [21]
(1-10 fps)

- Face detection [17]
(1-10 fps)

- Image segmentation [19]
(1-10 fps)

Event-driven DNNs
(response time)

- Image style transfer [22]
(< 0.1s)

- Image style transfer [22]
(< 0.1s)

Rendering
(resolution, fps)

- Camera frames
(1080p, 30 fps)1

- Bounding boxes - Couch (1440p, 60 fps)2

- Virtual documents
(1440p, 60 fps)2

- Handwriting updates

- Camera frames
(1080p, 30 fps)1

- Emoji/character mask

1,2 Microsoft HoloLens 2 [23] can record 1080p videos at 30 fps, and display 1440p resolution at 60 Hz at maximum.

300×300).

Seamless Rendering on Top of Concurrent DNN Execution. MR apps need to

seamlessly augment the virtual contents over the analyzed scenes for immersive user

experiences. Such foreground rendering should be continuously performed in real-

time in presence of the multi-DNN execution, causing serious contention on resource-

constrained mobile GPUs.

Summary. Concurrent execution of multi-DNN and rendering necessitates a platform

to prioritize and coordinate their execution on the mobile GPU. Careful coordination

will become more important if an app requires audio tasks (e.g., voice command recog-

nition, spatial audio generation) along with the vision tasks, or higher frame rate for

more immersive user experience.

2.2 Challenges

2.2.1 Complexity of the State-of-the-art DNNs

One might think that multi-DNN execution on mobile devices is becoming less chal-

lenging due to the emergence of lightweight model architectures (e.g., MobileNet [25,

27]) and the increasing computing power of mobile GPUs. However, the challenge still

exists. The main reason is that state-of-the-art DNNs do not employ the lightweight
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Table 2.2: DNNs for the above MR apps. Inference time is measured on MACE over

LG V50 (Adreno 640 GPU).

Task Model Input size
CPU/GPU

ops
Inference

time

Object
detection YOLO-v2 [20] 416×416×3 0/33 95 ms

Face
detection RetinaFace [17] 1,920×1,080×3 6/129 230 ms

Face
recognition ArcFace [18] 112×112×3 0/106 149 ms

Image
segmentation DeepLab-v3 [19] 513×513×3 0/101 207 ms

Image style
transfer StyleTransfer [22] 640×480×3 14/106 60 ms

Pose
estimation CPM [24] 192×192×3 0/187 14 ms

Hand
tracking PoseNet [21] 192×192×3 0/74 256 ms

Text
detection EAST [13] 384×384×3 8/117 214 ms

models directly, but enhance them with complex task-specific architectures to achieve

higher accuracy.

Table 2.3 compares the complexity of state-of-the-art DNNs with their backbones

in terms of floating-point operations (FLOPs) required for a single inference. The re-

ported values are either from the original paper if available, or profiled with Tensor-

Flow.Profiler.Profile() function. Overall, state-of-the-art DNNs require 5.76-10.75×

FLOPs than their backbones, showing that the lightweight backbone is only a small

part of the whole model. For instance, RetinaFace [17] detector employs feature pyra-

mid [28] on top of MobileNet-v1 [25] to accurately detect tiny faces, whereas Ar-

cFace [18] recognizer adds batch normalization layers on ResNet [26] and replaces

1×1 kernel to 3×3 for higher accuracy. Similar holds for DeepLab-v3 [19] (segmen-

tation model), which adds multiple branches to the backbone MobileNet-v2 [27] to

analyze the input image in various scales.
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Table 2.3: Complexity comparison between state-of-the-art DNNs and backbones.

State-of-the-art DNN Backbone (input size scaled)

Input size Model FLOPs Model FLOPs

1,920×1,080 RetinaFace [17] 9.54 G MobileNet-v1-0.25 [25] 1.65 G

112×112 ArcFace [18] 10.13 G ResNet [26] 0.95 G

513×513 DeepLab-v3 [19] 16.48 G MobileNet-v2 [27] 1.54 G
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Figure 2.1: Offloading latency of multi-DNN face identification pipeline.

2.2.2 Large Data Size and Compute

Each analysis task execution requires multiple DNN inferences over high-resolution

videos. Running the multi-DNN workload in low-latency is both challenging for on-

device execution and cloud offloading. Figure 2.1(a) compares the end-to-end latency

on-device and offloading latency for multi-DNN face identification on 1080p frame

(criminal chasing scenario). We use LG V50 (Qualcomm Adreno 640 GPU) and TensorFlow-

Lite for on-device inference, and a desktop server with RTX 2080 Ti GPU. We use dif-

ferent wireless networks: outdoor LTE (11 Mbps) and 5G (45 Mbps), indoor 802.11n

(92 Mbps) and 802.11ac (292 Mbps). First, on-device inference takes 8.6s to process a

frame average 17 faces, mainly due to large number of DNN inferences. The offload-

ing latency also remains above 0.3 s even for 802.11ac network, and increases to as

high 3.4s in outdoor LTE, mainly due to the large data size (i.e., 6 MB 1080p image) to
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be transferred over the network. While one may think that utilizing image compression

(e.g., JPEG) can reduce the network transmission latency, it comes at the cost of DNN

accuracy drop as shown in Figure 2.1(b), as such compression algorithms are mainly

designed to minimize the impact on human cognition [29].

2.2.3 Dynamic Resource Availability and Workload

When offloading the video to the edge/cloud server, network/compute resource bot-

tlenecks occur in a complex, alternating pattern over time, as workload and resource

availability independently fluctuate both within and across the network and compute

stages. This strongly motivates the need for joint scheduling. Specifically, network bot-

tleneck occurs if the bandwidth is smaller than the video encoding bitrate. Compute

bottleneck occurs if the DNN inference workload cannot run in real-time on available

GPUs.1

Dynamic Scene Content and Workload. Video content is highly dynamic across time

and location. This dynamically alters the usage of network and compute resources (i.e.,

video encoding bitrate and DNN inference latency) with low correlation. Specifically,

bitrate is proportional to scene change speed (e.g., object or camera motion), whereas

inference latency is proportional to the number of objects in the scene. Specifically, for

common two-stage analysis tasks (e.g., face identification [3]) composed of (i) object

detector and (ii) individual object analyzer, the total processing latency per frame is

Ttotal = Tdetect +Nobject · Tanalyze, (2.1)

where Tdetect and Tanalyze are the object detection and per-object analysis latencies

and Nobject is the number of objects. Figure 5.2 shows a scatter plot of how (bitrate,

# of objects) are loosely correlated for different videos (MOT [31] and self-collected

from YouTube, each dot is 1s chunk). For example, when a car with a dashcam is

driving fast on a sparse highway, the video will yield a low bitrate and high inference
1This is a problem even for lightweight DNNs; YOLOv5s [30] latency on 1080p input is 26 ms on

RTX 2080 Ti GPU; compute bottleneck occurs if available utilization drops below 78% for 30 fps video.
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(a) Network bottleneck

(bandwidth vs. bitrate).

(b) Compute bottleneck

(workload vs. available GPUs).

Figure 2.2: Example bottleneck timelines (colored red).

workload (blue dots). However, when it enters a crowded city road and moves slower,

the trend will be the opposite (green dots).

Dynamic Resource Availability. Network bandwidth fluctuates due to user mobility

and wireless channel status [7–9]. Available GPU utilization also fluctuates (indepen-

dently of bandwidth) due to multi-user resource contention, causing inference latency

slowdown [10].

Bottlenecks Occur Independently. The above factors fluctuate independently of each

other, causing alternating resource bottleneck patterns. Figure 2.2 shows an example

using a person analysis scenario [32] (composed of 2 recognition DNNs (EfficientNet-

B4 [33]) per each person for behavior and gender classification) on MOT17-11 [31]

video. First, Figure 2.2(a) shows an LTE bandwidth trace of MahiMahi [34] dataset.

Network bottleneck occurs when bandwidth is smaller than the video bitrate (5 Mbps).

Second, Figure 2.2(b) shows the same timeline in terms of the number of V100 GPUs

required to run the DNN inference in real-time. Compute bottleneck occurs when the

number of required GPUs is larger than the available GPUs (e.g., 6). Pearson corre-

lation coefficient of the two bottleneck events is -0.15, indicating a weak correlation.

This necessitates the need for joint scheduling of the two stages (i.e., when one stage

is bottlenecked, we can use more resources on the other stage).
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Figure 2.3: Multi-DNN GPU contention.

2.2.4 Multi-Task Resource Contention

Furthermore, supporting concurrent multi-DNN and redering task execution in resource-

constrained mobile devices (especially mobile GPUs) is challenging due to the lack of

framework and architecture support.

2.2.2.1 Multi-DNN GPU Contention

Existing mobile deep learning frameworks [14, 16, 35, 36] are mostly designed to run

only a single DNN. The only way to run multiple DNNs concurrently is to launch mul-

tiple inference engine instances (e.g., TF-Lite’s Interpreter, MACE’s MaceEngine)

on separate threads. However, multiple DNNs competing over limited mobile GPU

resources incur severe contention, unexpectedly degrading the overall latency. More

importantly, uncoordinated execution of multiple DNNs makes it difficult to guarantee

performance for mission-critical tasks with stringent latency constraints.

To evaluate the impact of multi-DNN GPU contention on latency, we run 4 DNNs

in the immersive online shopping scenario in Table 2.2 on MACE over LG V50. Fig-

ure 2.3(a) shows that with more number of DNNs contending over the mobile GPU,

the inference times increase significantly compared to when only a single DNN is run-

ning (denoted as Separate execution). More importantly, note that the individual DNN

inference times are sufficient to satisfy the app requirements (i.e., the sum of the infer-

ence times of 4 the DNNs are 560.02 ms, indicating that they can run at ≈2 fps when
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Figure 2.4: Rendering-DNN GPU contention on MACE over LG V50 (immersive on-

line shopping scenario).
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Figure 2.5: Rendering-DNN GPU contention on TF-Lite over Google Pixel 3 XL

(criminal chasing scenario).

coordinated perfectly). However, the uncoordinated execution makes the performance

of individual DNNs highly unstable (e.g., the latency of StyleTransfer increases from

59.93±3.68 to 1181±668 ms when 4 DNNs run concurrently), making it challenging

to satisfy the latency requirement. We observe a similar trend in TF-Lite: Figure 2.3(b)

shows that running 3 DNNs in the person identification pipeline developed in [3] incurs

significant latency overhead.

2.2.2.2 Rendering-DNN GPU Contention

More importantly, existing frameworks only consider a single DNN running in an

isolated environment (i.e., no other task contending over the mobile GPU), and are

ill-suited for MR apps that require concurrent execution of rendering in presence of

multiple DNNs. Figure 2.4 shows the 1080p camera frame rendering rate in presence
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of multiple DNNs, with the same DNN setting as in Figure 2.3. Figure 2.4(a) shows

that when multiple DNNs are running, rendering frame rate drops significantly due to

the similar contention in Figure 6.1, becoming as low as 11.99 fps when all 4 DNNs

are running. To make matters worse, GPU contention incurs frame rate heavily fluctu-

ating over time as shown in Figure 2.4(b), significantly degrading perceived rendering

quality to users. We observe a similar trend on TF-Lite when running TinyFace [37] de-

tector and ArcFace [18] recognizer concurrently with the rendering task (Figure 2.5).
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Chapter 3

Related Work

3.1 Live Video Analytics Applications

Live video analytics enables various useful apps including traffic monitoring [38], and

AR/MR [3–5]. Gabriel [39] uses cloudlets for cognitive assistance. OverLay [40] and

MARVEL [41] utilize cloud for location-based mobile AR services. A large body of

work aimed to improve the practicality of video analytics systems, including adapta-

tion [38], model merging [42], privacy protection [43], and continual learning [44,45].

In line with recent works, we characterize the workloads of futuristic live video ana-

lytics apps and design an edge-cloud collaborative platform to support the workload.

3.2 On-Device Systems

3.2.1 Mobile Deep Learning Frameworks

Although several frameworks have been developed from both industry [35, 36, 46, 47]

and academia [14–16,48–53], they have been mostly focused on running a single DNN

in an isolated environment (i.e., no other task contending over GPU). Few studies

aimed at running multiple DNNs, but are limited to be applied for concurrent multi-

DNN and rendering workload. DeepEye [12] and NestDNN [54] mainly focuses on
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memory optimization. DeepEye [12] parallelizes fully connected layer parameter load-

ing and convolutional layer computation but runs only a single DNN on GPU at each

time. NestDNN [54] dynamically adapts model size considering available resources

but does not consider the coordination of multi-DNN inferences. Lee et al. [55] and

Mainstream [56] focus on sharing weights and computations between multiple DNNs.

3.2.2 On-Device Continuous Mobile Vision

Several studies have tackled the challenge of on-device deep learning by model com-

pression [15, 49], inference speed acceleration [14, 16, 48, 52], and model size adap-

tation [50, 51]. However, existing systems mostly focused on running a single DNN

on downsampled images (e.g., 300×300) to analyze one or a small number of large,

primary object(s) in vicinity.

For multi-task concurrency support, there have been several studies aimed at en-

abling efficient GPU sharing on desktop/server GPUs, either by multiplexing multiple

kernels temporally [57–59] or spatially [60–65]. Such techniques have been also ap-

plied for multi-DNN workloads [66–69]. However, they are ill-suited for mobile GPUs

due to limited architecture support and memory bandwidth (see Chapter 6.3.1 for anal-

ysis).

3.3 Cloud Offloading Systems

3.3.1 Offloading for Continuous Mobile Vision

MCDNN [70] and DeepDecision [71] dynamically execute DNN on cloud or mobile

based on available resources. VisualPrint [72] offloads extracted features rather than

raw images to save bandwidth. Glimpse [73] tracks objects by offloading only trigger

frames for detection and tracking them in the mobile. Liu et al. [74] pipeline net-

work transmission and DNN inference to optimize latency. However, existing systems

process the input image as a whole, either on mobile or cloud at a given time; such
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approaches can result in significant latency in case of running complex multi-DNN

pipeline.

3.3.2 Adaptive Bitrate for Live Video Analytics

A large body of works has designed adaptive bitrate techniques for live video analytics

by controlling resolution [75], frame rate (frame filtering) [73,76–82], quantization [4],

and a combination of all [83]. Other works have designed RoI filtering and streaming

systems [84, 85] and super-resolution-enhanced streaming pipelines [86–88]. Quanti-

zation table optimization for DNNs [29, 89] has also been studied. However, they are

designed for network-only scheduling and cannot scale to alternating resource bottle-

neck scenarios.

3.3.3 ML Serving in Edge/Cloud Server

Several works aimed at high-throughput inference serving on edge/cloud servers, with

content-aware adaptation [38, 90], priority-aware scheduling [1, 54, 91], caching [92–

96], or multi-edge workload balancing [32]. However, they are mostly compute-only

scheduling (assume that videos arrive at the cloud without delay), lacking scalability

in network bottlenecks. For example, VideoStorm [1] allocates CPU cores across users

considering resource-quality tradeoffs (profiled offline), but cannot leverage additional

network resources in compute bottleneck.

3.3.4 Edge-Cloud Collaborative Inference Systems

Several systems efficiently split the DNN inference workload across mobile/edge and

cloud [10,97–99]. However, they mostly focus on image processing and lack consider-

ation for videos (e.g., how to efficiently compress the intermediate inference features

of consecutive frames). Furthermore, they mostly assume single task scenarios and

lack consideration for multi-DNN and rendering concurrency support.
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3.4 Tiny ML/Efficient Deep Learning

A large body of works aimed at DNN compression for resource-efficient deep learning

in mobile/edge devices. They have leveraged various techniques including lightweight

model architecture design [25, 30], weight pruning [100], quantization [101], combi-

nation of both [102, 103], hardware-aware model adaptation [104], and neural archi-

tecture search [105, 106]. Such optimization techniques can also be leveraged in our

platform for resource-efficiency.
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Chapter 4

EagleEye: AR-based Person Identification in Crowded

Urban Spaces

4.1 Introduction

In this Chapter, we design EagleEye, a system for content-aware adaptation and edge-

cloud collaborative execution in live video analytics. We take the AR person finding

application as the representative multi-DNN live video analytics workload. Imagine a

parent looking for her/his missing child in a highly crowded square. In many cases, a

swarm of people in front of her/his eyes will quickly overload cognitive abilities; our

motivational study shows that it takes ≈16 seconds to locate a person in a crowded

scene (See Chapter 4.3 for details). An Augmented Reality (AR)-based service with

smart glasses or a smartphone will be extremely helpful if it can capture the large

crowd from distance and pinpoint the missing child in real-time (Figure 4.1). De-

spite recent advances in person identification techniques using various features such

as face [18, 107, 108], gait [109, 110] or sound [111, 112], fast and accurate person

identification in crowded urban spaces remains a highly challenging problem.

EagleEye is a AR-based system to identify missing person(s) in large, crowded

urban spaces. It continuously captures the image stream of the place using commodity
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Figure 4.1: Example usage scenario of EagleEye: parent finding a missing child. More

examples in Chapter 4.2.

mobile cameras, identifies person(s) of interests, and shows where the target is in the

scene in (soft) real-time. EagleEye not only shows a good example of future AR

applications based on real-time analysis of complex scenes, but also characterizes the

workload of future multi-DNN mobile deep learning systems.

Designing EagleEye involves critical technical challenges for both identification

accuracy and latency.

• Recognition Accuracy. Compared to prior systems [113–115] that aim at iden-

tifying 1 or 2 faces in close vicinity (e.g., engaged in a conversation), the key chal-

lenge in building EagleEye is accurately detecting and recognizing distant small

faces. In crowded spaces, individual faces often appear very small, with facial details

blurred out. Recent Deep Neural Network (DNN)-based face recognition has shown

remarkable progress in accurately identifying faces under various unconstrained set-

tings [18, 116, 117] (e.g., variations in pose, occlusion, or illumination). However, the

state-of-the-art techniques still fail to provide robust performance for Low-Resolution

(LR) faces. Our study shows that Equal Error Rate, the value in the ROC curve where

false acceptance and false rejection rates are identical, of the state-of-the-art DNN [18]

grows from 9% to 27% when resolution drops from 112×112 to 14×14 (Chapter 4.3).

• Identification Latency. More importantly, it is challenging to analyze a crowded

scene in (soft) real-time to allow users to sweep large spaces quickly. EagleEye im-
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poses unique challenges compared to recent DNN-based continuous mobile vision sys-

tems [12,14–16,70,71,74]. Firstly, as shown in Figure 4.2, EagleEye requires running

a series of complex DNNs multiple times for a single scene: face detection network

once over a scene, our resolution enhancing network (introduced in Chapter 4.5.2) and

face recognition network per each face. This is very different from prior systems that

run a single DNN only once over a scene. Secondly, each DNN is highly complex

to achieve high accuracy, incurring significant latency. Face detectors employ feature

pyramid [28] which upsamples features in latter layers and adds up to earlier layers to

detect small faces. Also, state-of-the-art recognizers are heavy ResNet-based. Finally,

prior work mostly downsample the input frames (e.g., 300×300 [118]) to reduce com-

plexity (this was possible as they analyze a small number of large, primary objects in

vicinity). However, EagleEye should run the identification pipeline on high-resolution

frames to detect a large number of distant faces that appear very small.

It is highly challenging to run a complex multi-DNN pipeline over high-resolution

images in real-time. It is not even trivial to simply port state-of-the-art DNNs to mo-

bile deep learning frameworks (e.g., TensorFlow-Lite) due to the limited number of

supported operations. The challenge aggravates considering the execution latency. For

instance, a lightweight MobileNet [25] can only process two 1080p frames per second

on high-end mobile GPU (Table 4.1). Naive execution of EagleEye’s entire pipeline

takes 14 seconds for a scene with 30 faces (Figure 4.5). We can consider multithread-

ing or offloading, but they are not also straightforward to apply. Multithreading de-

grades performance due to resource contention over limited mobile resources (e.g.

GPU, CPU, memory). Also, 3G/LTE network with low bandwidth is likely the only

wireless network available in crowded outdoor environments, making offloading non-

trivial.

To tackle the challenges, we design and develop a suite of novel techniques and

adopt them in EagleEye.

• Identity Clarification Network. We first design a novel end-to-end face iden-

22



Figure 4.2: Multi-DNN face identification pipeline.

tification pipeline to identify small faces accurately. Our key idea is to add Identity-

Clarification Network (ICN) on conventional 2-step pipeline (detection-recognition) to

recover missing facial details in LR faces, thus resulting in a 3-step pipeline (detection-

clarification-recognition as shown in Figure 4.2). ICN adopts a state-of-the-art image

super-resolution network as the baseline and innovates it with specialized training loss

functions to enhance LR faces for accurate recognition; note that prior super-resolution

networks focus on generating perceptually natural images and fail to preserve identi-

ties, making them ill-suited for recognition [119] (See Chapter 4.5). Also, ICN enables

identity-preserving reconstruction using reference images (probes) of the target, com-

monly available in our scenarios (e.g., photos of children provided by parents). We

observe that the complexity of LR face recognition results from accepting positive

identities rather than denying negative identities (see Chapter 4.5.2 for details). Thus,

biasing ICN on the target improves LR face recognition accuracy with only a small

increase in false positives. Overall, our ICN-enabled pipeline improves true positives

by 78% with 14% false positives, against the 2-step identification pipeline.

•Multi-DNN Execution Pipeline. Our workload (i.e., running a series of DNNs

multiple times on high-resolution images) requires a differentiated strategy to optimize

the heavy computation. We develop a runtime system with Content-Adaptive Parallel

Execution to run a multi-DNN face identification pipeline at low latency. The key idea
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behind this approach is to divide the high-resolution image into multiple sub-regions

and selectively enable different components in the pipeline, depending on the content.

For instance, ICN is only applied to a region with LR faces while the entire pipeline

is not executed for a background region with no faces. Furthermore, we exploit the

spatial independence of face recognition workload (i.e., identifying faces in different

sub-regions does not have dependency) to parallelize and pipeline the execution on

heterogeneous processors on the mobile and cloud. Overall, our technique accelerates

the latency by 9.07× with only 108 KBytes of data offloaded.

Our major contributions are summarized as follows:

• To the best of our knowledge, this is the first end-to-end mobile system that pro-

vides accurate and low-latency person identification in crowded urban spaces.

• We design a novel face identification pipeline capable of accurately identifying

small faces in crowded spaces. By employing Identity Clarification Network to

recover facial details of LR faces, we enhance true positives by 78% with 14%

false positives.

• We design a runtime system to handle the unique workload of EagleEye (i.e., pro-

cessing high-resolution images with multiple DNNs for complex scene analysis).

We believe this will be an unexplored common workload for many mobile/wearable-

based continuous vision applications. We utilize a suite of techniques to minimize

the end-to-end latency to as low as 946 ms (9.07× faster than naive execution).

• We conduct extensive controlled and in-the-wild study (with real implementations

and various datasets), validating the effectiveness of our proposed system.

4.2 Motivating Scenarios

Finding a Missing Child. In crowded squares or amusement parks, there are many

cases where a parent loses track of her/his child. In such incidents, it is difficult to

find the missing child with naked eyes since she/he becomes cognitively overloaded
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to identify many people in vicinity. EagleEye can help the parent: by sweeping the

mobile device to capture the space from distance, it can help quickly pinpoint possible

faces and narrow down a specific area to search, so that the parent can find the child

before the child moves to a different place. Similarly, police officers can use EagleEye

to chase criminals in crowded malls, streets, squares, etc.

Children Counting in Field Trips. Teachers in kindergarten regularly take children

out for field trips to catch educationally-depicting behaviors hardly captured in class-

room settings. However, in reality, teachers spend most of the time counting children to

make sure they are in place. EagleEye can be of extensive use to reduce the cognitive

burden for the teachers so that they can focus on the original goal.

Social Services for Familiar Strangers. EagleEye can be used to build an interest-

ing social service to connect people. For example, it can be used to identify familiar

strangers (people whom we met in the past but do not remember the details) to help

with interaction; a person attending a social event can use EagleEye to identify them

and get an early heads-up before they are in close proximity to avoid embarrassing

moments.

4.3 Preliminary Studies

To motivate EagleEye, we first conduct a few studies to verify (1) how quickly hu-

mans identify face(s) in crowded urban spaces and (2) whether it is feasible in terms

of accuracy and speed to employ face recognition algorithms to aid humans’ cognitive

abilities.

4.3.1 How Fast Can Humans Identify Faces?

Prior studies report that it takes for humans about 700 ms to detect a face in a scene [120],

and about 1 second to recognize the identity of a single face image [121]. We extend

the experiments to study how long it takes to identify target(s) in crowded scenes. We
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Figure 4.3: Human cognitive abilities on identifying faces in crowded scenes: response

time and accuracy.

first recruit 6 college students (5 males and 1 female, age 24-28) as subjects for dataset

collection, and take videos of them blending inside the crowd in various urban spaces

including college campus, downtown streets, and subway stations. Next, we recruit 11

students (10 males and 1 female, age 24-32) who are of mutual acquaintances with

the subjects (denoted as Familiar), and 14 other students (12 males and 2 females, age

20-26) who have never seen the subjects before (denoted as Unfamiliar).

In the experiments, the participants are seated in front of the screen with a similar

setup as in [120]. Each participant is first shown faces of 1 to 3 target identities. Af-

terwards, a scene image (1080p resolution) is shown, in which target(s) may or may

not exist. The participant clicks the location in the scene where she/he finds each tar-

get. Response time is measured as the duration between when the scene is displayed

and when the participant finishes identifying all targets. The scenes are classified into

three levels of crowdedness (examples are shown in Figure 4.16): i) Low (less than 10

people in close distance with face sizes at least 30×30 pixels), ii) High (more than 20

people with face sizes smaller than 14×14), and iii) Medium (between Low and High).

Each participant is shown 5 scenes per each category (15 in total) and was asked to be
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as precise as possible.

Figure 4.3 shows the response time/accuracy results. Our experimental results are

summarized as follows (unless specified, the reported results are on High scenes):

• Overall, it takes 6.37 and 15.83 seconds on average to identify familiar and unfa-

miliar faces in crowded scenes, respectively, showing noticeable cognitive loads.

• It takes longer to identify unfamiliar faces than familiar ones.

• Not only does it take longer to identify a target in more crowded scenes, but the

accuracy also drops (Figures 4.3(a) and (d)).

• Especially for the Familiar group, it takes longer to confirm the absence of target

than presence. (Figures 4.3(b) and (e)). We observe that it is because when partic-

ipants fail to locate the target in the scene, they start looking over again multiple

times to confirm their decision.

• It takes longer to identify multiple targets, and accuracy drops as well (Figures 4.3(c)

and (f)).

The above results clearly show the human’s vulnerability to cognitive overload.

While the study was designed as identifying the target person(s) in a scene image for

controllability of the experiment, we conjecture that the cognitive overload will be

greater in real-world settings where the scene does not fit into a single view.

4.3.2 How Accurate Can DNNs Identify Faces?

Faces in crowded spaces captured from a distance experience high variations in pose,

occlusion, illumination, and resolution, making accurate recognition very challenging.

While prior algorithms have achieved robust performance (e.g., over 90% accuracy)

for the first three [18, 116, 117], the Low-Resolution (LR) face recognition problem

has not been fully studied yet.

We conduct a study to analyze the difficulty of LR face recognition. We first train

ResNet50 with ArcFace loss [18] on MS1M dataset [122], and test performance on 50

identities in VGGFace2 [123] testset (50 images per identity). Figure 4.4 shows that
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Figure 4.6: Feature map visualization for varying resolutions (points with same color

represents same identity).

verification (determining whether two faces match or not) accuracy drops significantly

as resolution decreases. Equal Error Rate (EER), the value in the ROC curve where

false acceptance and false rejection rate are identical, grows as high as 0.27 when the

resolution is 14×14.

For further analysis, we run a small study with 8 identities in VGGFace2 [123]

testset. We train ResNet50 [26] with 2-dimensional output features using SphereFace

loss [107]. Figure 4.6 visualizes the trained features for varying resolutions, where

the points with the same color represent the same identity. We observe that when the

resolution is high (e.g., 112×112), features for each identity form non-overlapping
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Table 4.1: Inference time of DNNs with TensorFlow-Lite running on LG V50 (Qual-

comm Adreno 640 GPU).

Model

Input size
MobileNetV1 [25]

(Classification)
YOLO-v2 [20]

(Detection)

224×224 24 ms 357 ms

640×360 55 ms 1,477 ms

1,280×720 209 ms 5,009 ms

1,920×1,080 452 ms 9,367 ms

Table 4.2: Complexity and latency of component DNNs. FLOPs are measured with

tf.profiler.profile() function.

Task Model FLOPs Inference time

Face
detection

RetinaFace [17]
(MobileNetV1-based) 9.54 G

648 ms per
1080p image

Identity
clarification Ours (Chapter 4.5.2) 15.84 G

166 ms per
14×14 face

Face
recognition

ArcFace [18]
(ResNet50-based) 10.21 G

287 ms per
112×112 face

sharp clusters. However, as resolution drops, clusters become wider and start to overlap

with each other, becoming indistinguishable.

4.3.3 How Fast Can DNNs Identify Faces?

Conventional face identification pipelines operate in a 2-step manner (i.e., face de-

tection on the image and face recognition on each detected face sequentially). In

our scenarios, both steps require significant computation. First, the detection network

should run on a high-resolution frame to detect distant faces that appear very small.

In such settings, providing real-time performance is challenging; Table 4.1 shows that

YOLOv2 [20], one of the fastest networks that can be used for face detection, takes
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more than 9 seconds to process a 1080p frame. Second, recognition latency increases

proportionally to the number of faces, which can be very large in crowded scenes. Fig-

ure 4.5 shows that naively running the state-of-the-art multi-DNN face identification

pipeline composed of DNNs summarized in Table 4.2 1 takes more than 14 seconds

to process a scene with 30 faces even on a high-end LG V50 with Qualcomm Adreno

640 GPU.

4.3.4 Summary

In crowded spaces, humans become cognitively overloaded, clearly necessitating the

need for a system to aid their abilities. However, DNN-based face recognition algo-

rithms cannot be applied directly as they fail to identify LR faces accurately, and naive

execution incurs significant latency.

4.4 EagleEye: System Overview

4.4.1 Design Considerations

High Recognition Accuracy. Our primary objective is to design a face identifica-

tion pipeline capable of accurately identifying target(s) in crowded spaces, even when

he/she appears very small.

Soft Real-Time Performance. While enabling an accurate face identification pipeline,

our goal is to provide soft real-time performance (e.g., 1 fps) for application usability.

We aim to devise techniques to optimize various latency components in the end-to-end

system while incurring a minimum loss in recognition accuracy.

Use of Commodity Mobile Camera. We aim at achieving high accuracy using frames

captured by cameras of commodity smartphones or wearable glasses (e.g., 1080p
1These are the state-of-the-art not only in terms of accuracy but also in terms of complexity. For

face detectors, comparable networks are heavy VGG16 [124] or ResNet101 [37]-based. Recent face

recognizers are based on 64-layered ResNet [107, 108].
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frames at 30 fps [125]). If cameras with higher resolution or optical zoom-in are avail-

able, our approach can help cover a more extensive search area.

Minimal Use of Offloading. In our common use cases (i.e., a moving user in crowded

outdoor environments), we assume that the availability of edge servers and Wi-Fi con-

nectivity are limited. For robust performance, we aim to minimize the amount of data

offloaded to the cloud and run most of the computation on local.

4.4.2 Operational Flow

Figure 4.7 shows the nutshell operation of EagleEye: given a crowded scene image,

we adaptively process each region with different pipelines depending on the content.

For background regions, we do not run any DNN. For non-background regions, we

run face detection and adaptively select the latter part of the pipeline to process each

detected face based on different variations: i) large, frontal faces (which are very easy

to recognize) are processed with a lightweight recognition network, ii) large, profile

faces (whose resolutions are sufficient but pose variations make recognition difficult)

are processed with a heavy recognition network, and iii) small faces are first processed

with Identity Clarification Network) (which enhances resolution of LR faces for ac-

curate recognition) and then with heavy recognition network. Finally, exploiting the

spatial independence of the task, we process each region and face in parallel on het-

erogeneous processors on mobile and cloud.

Figure 4.8 shows the operational flow of EagleEye. We employ Content-Adaptive

Parallel Execution to run the complex multi-DNN face identification pipeline at low

latency using heterogeneous processors on mobile and cloud. Given an input frame,

Spatial Pipelining first divides it into spatial blocks, so that each block can be pro-

cessed in a pipelined and parallel manner. Afterwards, Edge-Based Background Fil-

tering rules out background blocks with edge intensity lower than a threshold. For the

remaining blocks, we detect faces on the mobile CPU. Each detected face is scheduled

to a different pipeline by Variation-Adaptive Face recognition. Large, frontal faces are
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① Background
à Excluded from processing
② Large, frontal faces
à Detection + lightweight recognition
③ Large, profile faces
à Detection + heavy recognition
④ Small faces
à Detection + ICN + heavy recognition

①② ④③

Figure 4.7: Operation of EagleEye in a nutshell.
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Figure 4.8: EagleEye system overview.

processed by lightweight recognition network running on mobile GPU. The rest is

offloaded to the cloud, where large, profile faces are processed by heavy recognition

network, and small faces are processed by ICN and then by heavy recognition network.

4.5 Identity Clarification-Enabled Face Identification Pipeline

In this section, we detail our novel 3-step face identification pipeline. It operates as

shown in Figure 4.2: i) detect faces in the scene, ii) enhance each LR face with ICN,

and iii) extract feature vectors for each face with recognition network.
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Figure 4.9: Identity Clarification Network: overview.

4.5.1 Face Detection

The first step of our pipeline is face detection. The detection network should be ac-

curate in detecting small faces, since faces missed in this step would lose the chance

of being identified at all. At the same time, it should be lightweight so that it can

run in (soft) real-time. We experiment various state-of-the-art DNNs and select Reti-

naFace detector [17] with MobileNetV1 [25] backbone for the following reasons: i)

it adopts context module which has been proven very effective in detecting small

faces [124, 126], and ii) it is the fastest among the state-of-the-art group due to its

lightweight backbone network (others are heavy VGG16-based [124] or ResNet101-

based [37]).

4.5.2 Identity Clarification Network

LR faces lack details crucial for identification. To enhance recognition accuracy, we

design ICN, which enhances the resolution of LR faces using Generative Adversar-

ial Network (GAN). As conventional GANs reconstruct faces with significant distor-

tion from the original identity (Figure 4.11), we adapt GAN to reconstruct identity-

preserving faces by using various loss functions, as well as a specialized training

methodology (Identity-Specific Fine-Tuning).

Network Architecture. Figure 4.9 shows the overview of ICN. For generator G, we
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Figure 4.10: Generator network architecture.

adopt Residual block [26]-based architecture similar to FSRNet [127] as shown in Fig-

ure 4.10, which has shown high reconstruction performance. Furthermore, we employ

anti-aliasing convolutional and pooling layers [128] to improve robustness to pixel

misalignment in face detection and cropping process. We employ various additional

networks and loss functions to train ICN to preserve identity as follows.

Following the convention in super-resolution [129,130], the generator is trained to

minimize the pixel-wise L2 loss between the reconstructed face and the ground truth,

Lpixel =
1

HW

H∑
i=1

W∑
j=1

(
∥yi,j − ỹi,j∥2 + ∥yi,j − ŷi,j∥2

)
, (4.1)

whereH,W are height and width, ỹ and ŷ are the intermediate and final High-Resolution

(HR) face in Figure 4.10, respectively, and y is the ground truth.

As reconstructing HR faces is very challenging, recent studies have shown that

employing a facial landmark estimation network to guide the reconstruction process

yields superior performance [127,131]. We adopt the approach to estimate facial land-

marks from the intermediate HR face instead of directly from the LR face. The facial

landmark estimation network is trained to minimize the MSE between estimated and

ground truth landmarks,

Llandmark =
1

N

N∑
n=1

∑
i,j

∥zni,j − ẑni,j∥2, (4.2)

where ẑni,j is the estimated heatmap of the n-th landmark at pixel (i, j) and z is the

ground truth.
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LR GAN Ground truth

Figure 4.11: GANs reconstruct realistic faces, but fail to preserve the face identity.

Recent studies have shown that GAN [132] plays an important role in reconstruct-

ing realistic images. We employ WGAN-GP [133] for improved training stability,

whose loss is defined as:

LGAN = −D(ŷ) = −D (G (x)) , (4.3)

where G(x) denotes the HR face reconstructed by the generator, and D denotes the

discriminator that classifies whether the reconstructed face looks real or not, which is

trained by minimizing the following loss function (refer to the original paper [133] for

details),

LDiscriminator = D(ŷ)−D(y) + λ (∥∇x̂D (x̂) ∥2 − 1)
2
. (4.4)

We also enforce the reconstructed face to have similar features with the ground

truth by minimizing the face similarity loss

Lface =
1

d
∥ψ (y)− ψ (ŷ) ∥2, (4.5)

where ψ(·) denotes d-dimensional feature vector extracted by the VGG16 network

trained on ImageNet [134].

Finally, the above loss functions are combined as a weighted sum and minimized

in the training process,

Ltotal = Lpixel + 50 · Llandmark + 0.1 · LGAN + 0.001 · Lface. (4.6)

Identity-Specific Fine-Tuning. Baseline ICN aims to adapt conventional GANs to

overcome their limitation (i.e., reconstructing perceptually realistic faces at the cost
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of significant distortion from the ground truth). However, we notice that it still of-

ten reconstructs faces with distorted identity from the original. Accordingly, we need

another step to employ ICN for our purpose of accurate recognition.

Before introducing our approach, we further dig deeper into the LR face recog-

nition problem. Figure 4.12 shows that as resolution decreases, L2 distance between

features of faces with the same identity increases significantly, whereas those of dif-

ferent identities remain identical. In other words, the difficulty of LR face recognition

comes from the hardship of accepting positive pair of faces, rather than denying neg-

ative pairs. Therefore, LR face recognition accuracy can be enhanced if we can bring

back the features of faces with the same identity close to each other.

To this end, we develop Identity-Specific Fine-Tuning to re-train ICN with refer-

ence images (probes) of the target, which is commonly available in our target scenarios

(e.g., photos of children provided by parents). Such re-training process enables ICN

to instill the facial details of the target into the input LR face, thus making it easier to

recognize when a LR face of target identity is captured. While such biasing may also

increase false positives caused by LR faces that do not match the target identity pulled

towards the probes, we observe that such cases only occur for ones that are very close

to the target in feature space, thus yielding gain in true positives outweighing false

positives (78% vs. 14% as shown in Chapter 4.8.3).

Probe Requirements. To fine-tune the ICN to instill facial details of the target, Identity-

Specific Fine-Tuning requires probe images with rich facial details. As an initial study

we collect the probes with high-resolution, and leave detailed analysis of the impact of

the composition of probes (e.g., pose or occlusion) as future work.

Data Augmentation. To diversify the probes as well as boost robustness to various

real-world degradation, we also utilize the following augmentation techniques:

• Illumination. Change value (V) component in HSV color space.

• Blur. Apply Gaussian blur with varying kernel sizes.

• Noise. Add Gaussian noise with varying variance.
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Figure 4.12: CDF of face distances for varying resolutions.

• Flip. Apply horizontal flip.

• Downsampling. Resize with different downsampling kernels. (e.g., bicubic, near-

est neighbor).

Scalability. Finally, the overhead of fine-tuning the baseline ICN pre-trained on a

large-scale face dataset to a specific target identity is not significant (e.g., takes about

20 minutes on a single NVIDIA GTX 2080Ti GPU). Thus, we expect it can be flexibly

re-trained at deployment as the target changes.

4.5.3 Face Recognition and Service Provision

At the final stage, state-of-the-art ResNet50-based ArcFace [18] runs on each face to

extract 512-dimensional feature vector, which is compared to that of the target probes.

Those with distance below the threshold are highlighted on the screen so that the user

can take further actions. To compensate for possible motion between the image cap-

ture and output rendering (about 1 second as our evaluation shows), we can employ

motion tracking to shift the bounding boxes using approaches used in prior detection

systems [73, 74].

4.6 Real-Time Multi-DNN Execution

In this section, we detail our runtime system to execute the multi-DNN face identifica-

tion pipeline at low latency. We start with workload characterization by identifying the
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sources of latency, followed by our proposed Content-Adaptive Parallel Execution.

4.6.1 Workload Characterization

Sequential Execution of Multiple DNNs. Identifying target person(s) in a crowded

scene requires a sequential execution of multiple complex DNNs (i.e., face detection,

identity clarification, and recognition) whose individual complexities are summarized

in Table 4.2.

High-Resolution Input. Conventional object detection networks downsample the in-

put images to reduce complexity (e.g., 416×416 [20] or 300×300 [118]). However,

in our case, the input image size should be retained large (e.g., 1080p), so that small

faces have enough pixels to be detected. As the complexity of DNN inference grows

proportionally to the image size, latency becomes significant when processing such

high-resolution images.

Repetitive Execution for Each Face. ICN and recognition network must repeatedly

run for each face detected by the face detection network. The latency increases pro-

portionally to the number of faces in the scene, which becomes significant in crowded

spaces.

4.6.2 Content-Adaptive Parallel Execution

4.6.2.1 Optimization Strategies

Content-Adaptive Pipeline Selection. We adaptively process each region of the im-

age with different pipelines depending on the content. This helps optimize the latency

incurred when processing a large number of faces, while maintaining high recognition

accuracy.

Spatial Independence and Parallelism. Identifying faces in different regions of the

image is spatially independent. Furthermore, recognizing each detected face can be

executed simultaneously. To take full advantage of such opportunities for parallelism,
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(a) Raw frame. (b) Edges. (c) Filtered.

Figure 4.13: Edge-based background filtering.

we divide the image into spatial blocks and process them in a pipelined and parallel

manner using heterogeneous processors on mobile and cloud. This helps optimizing

the latency of multi-DNN execution on high-resolution images.

4.6.2.2 Content-Adaptive Pipeline Selection

We develop techniques to optimize the latency of complex multi-DNN face identifi-

cation pipeline execution while maintaining high accuracy. Specifically, Edge-Based

Background Filtering rules out background regions where faces do not exist at all.

Variation-Adaptive Face Recognition selects different recognition pipelines depend-

ing on recognition difficulty.

Edge-Based Background Filtering. Running face detection on regions where faces

do not exist at all (e.g., background) is a wasteful computation. To mitigate the prob-

lem, we use edges in the image to rule out such regions before running the identifica-

tion pipeline. Specifically, given a frame as shown in Figure 4.13(a), we detect edges

as in Figure 4.13(b), filter out blocks with edge intensity below a threshold as depicted

in Figure 4.13(c), and run face detection only on the remaining blocks. Note that edge

detectors are extremely lightweight, especially considering that we can even detect

edges on downsampled images. For example, the time complexity of Canny edge de-

tector [135] for H ×W frame is O(HW · log(HW )), and it runs in less than 2 ms for

360p frame on LG V50. Thus, its overhead is minimal even when the edge detection

is not effective for some scenes having full of objects and no background regions.

39



Is the resolution sufficient?

Is the pose frontal?

No Yes

No Yes

ICN+ heavy 
recognition

�
�

�

� �

�ࣂ�

Heavy recognition

� �

�

� �

� ࣂ

Lightweight recognition
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Figure 4.15: Spatial Pipelining on heterogeneous processors.

Variation-Adaptive Face Recognition. State-of-the-art recognition networks are de-

signed very complex (e.g., heavy ResNet backbone with a large number of batch nor-

malization layers) to accurately identify faces even under high variations in pose, illu-

mination, etc. However, employing such heavy networks for faces in ideal conditions

is an overkill. For example, MobileFaceNet [136] and ResNet50-based ArcFace [18]

achieve comparable accuracy on LFW [137] dataset composed of large, frontal faces

(98.9% vs. 99.3%), whereas inference time differs by more than 20× (14 ms vs.

287 ms). Therefore, we aim to optimize latency by adaptively processing each face

depending on its variation (i.e., recognition difficulty).

Figure 4.14 depicts our Variation-Adaptive Face Recognition, which utilizes the

size of bounding box and 5 face landmarks detected by RetinaFace [17] detector.

First, small faces are processed by ICN and then by ResNet50-based ArcFace [18].
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Algorithm 1 Combined operational flow of EagleEye
1: while application is running do

2: Result← {}

3: Frame← acquireFrameFromCamera()

4: Edges← EdgeDetector(Frame)

5: NonBackground← BackgroundFilter(Edges) Block in NonBackground

6: Faces← FaceDetection(Block) face in Faces

7: Result←Result∪AdaptiveFaceRecognition(face)

8: Render Result on screen

For large faces, we estimate the pose using the detected landmarks; for example, if

the angle between the line connected by points (2, 3) and (2, 5) measured in coun-

terclockwise direction is negative, we can tell that the face is looking to the right. As

faces with pose variations are difficult to accurately identify, they are also processed by

ResNet50-based ArcFace (ICN is not needed here as resolution is already sufficient).

The remaining faces (large and frontal) which are easy to identify are processed by

MobileFaceNet [136].

4.6.2.3 Execution Planning

We optimize latency of multi-DNN face identification pipeline by scheduling each

component DNN execution to the most suitable processor on mobile and cloud.

Offloading Decision. As our target scenarios assume crowded outdoor environments

with congested 3G/LTE network, offloading high-resolution images for detection is

impractical; instead, we offload only the detected faces. Specifically, LR faces are

suitable for offloading, as their data sizes are very small (e.g., 14×14 pixels) whereas

the required computation (i.e., ICN and heavy recognition) incurs significant latency

on mobile (e.g., 166+287 ms). We also offload large, profile faces, and leave only the

large, frontal faces to be processed by lightweight recognition on mobile.

Mobile Processor Mapping. The mobile needs to run both detection and lightweight

recognition. However, simply multithreading the execution on GPU does not help op-
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timize latency, as mobile GPUs lack preemptive multitasking support. Therefore, we

utilize heterogeneous processors (CPU and GPU) to parallelize the execution. As dy-

namically switching the mapping over time is challenging due to high latency overhead

of loading DNN on mobile GPUs (e.g., 2 seconds for 118 MB ResNet50-based Arc-

Face [18] on LG V50 with TensorFlow-Lite), we statically run detection on CPU and

recognition on GPU considering the following aspects:

• Memory I/O. Running face detection on GPU requires high-resolution images

loaded onto GPU memory, and output feature maps from different stages in the

feature pyramid (whose size is proportional to the input image size) copied back to

CPU to be post-processed to bounding boxes. Considering memory overhead, it is

more suitable to run face recognition on GPU whose input/output are small-sized

faces and 1D feature vectors.

• Inference time. Besides, we observe that the inference speed slowdown of Reti-

naFace detector running on CPU is 1.22× (648 vs. 793 ms), whereas it is 2.07× for

MobileNetV1-based ArcFace recognizer (14 vs. 29 ms). Therefore, running detec-

tion on CPU and recognition on GPU is more feasible to optimize overall latency,

especially when the number of faces is large.

4.6.2.4 Spatial Pipelining

To further optimize the latency, we exploit the spatial independence of the workload

by processing each image sub-block in a pipelined and parallel manner. As depicted

in Figure 4.15, given non-background blocks in a scene, we detect faces in one block

on mobile CPU, while simultaneously processing faces detected in another block on

mobile and cloud GPU.

Note that we need to divide the image into blocks in an overlapping manner with

padding, so as to prevent faces from being split across different blocks (and thereby

failing to be detected). While fine dividing increases the chance of higher parallelism,

it also increases the computational overhead due to padding. Based on our empirical
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(a) Low. (b) Medium. (c) High.

Figure 4.16: In-the-wild dataset examples.

Table 4.3: Average and standard deviation of the composition of each face type in the

test dataset.

Low Medium High

Large frontal 3.00±2.62 3.85±2.11 5.20±3.73

Large profile 1.00±0.76 1.50±1.49 2.8±1.78

Low-resolution 3.07±1.75 5.45±2.50 8.87±3.64

Total 7.07±1.79 11.10±3.74 16.87±4.78

evaluation on such tradeoff in Chapter 4.8.4, we divide an image into 4x4 blocks.

4.6.2.5 Putting Things Together

Algorithm 1 summarizes the combined operational flow. Upon acquiring a frame from

the camera, we detect edges (line 4) and filter out background (line 5). For non-

background blocks (line 5), we run face detector on CPU (line 6) and process each

face adaptively in mobile or cloud GPU (lines 6–7) in a pipelined and parallel manner.

Finally, the recognition result is rendered on the screen.

4.7 Implementation

Mobile. We implement the mobile side of EagleEye on two commodity smartphones

running on Android 9.0.0: LG V50 with Qualcomm Snapdragon 855 and Adreno 640

GPU and Google Pixel 3 XL with Qualcomm Snapdragon 845 and Adreno 630 GPU.

Unless stated otherwise, we report evaluation results on LG V50. RetinaFace [17]
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and MobileFaceNet [136] are implemented using TensorFlow 1.12.0 and converted to

TensorFlow-Lite for mobile deployment. Image processing functions (edge detection,

face cropping) are implemented using OpenCV Android SDK 3.4.3. The mobile device

is connected to the server via a TCP connection.

Cloud. We implement the cloud side of EagleEye on a desktop PC running on Ubuntu

16.04 OS, equipped with Intel Core i7-8700 3.2 GHz CPU and an NVIDIA RTX 2080

Ti GPU (11 GB RAM). We implement most of the cloud-side functions in Python

3.5.2 and utilize Numba [138], a Just-In-Time (JIT) compiler for Python, to accelerate

the performance comparable to C/C++. ICN and ResNet50-based ArcFace [18] are

implemented using TensorFlow 1.12.0.

4.8 Evaluation

4.8.1 Experiment Setup

DNN Training. We train our face detector on WIDER Face [139] train dataset. Also,

we train our face recognizers (both the light and heavy models) on MS1M [122]

dataset. ICN is trained on FFHQ dataset [140]. As FFHQ dataset does not contain face

landmark labels, we employ state-of-the-art network [141] to estimate face landmarks

and use them as ground truth labels.

Datasets. We evaluate EagleEye with two different datasets: single faces and crowded

scenes. For single faces, we collect 50 identities in VGGFace2 [123] testset, with 50

samples per each identity. For the scenes, we use in-the-wild images (mostly contain-

ing faces of a single ethnicity group) collected and classified depending on crowded-

ness (i.e., Low, Medium, and High) as described in Chapter 4.3.1 (examples are shown

in Figure 4.16). The detailed composition of the faces in the scene dataset are sum-

marized in Table 4.3. We also categorize the dataset depending on whether the target

is present or not. Furthermore, we also collect scene images from WIDER Face [139]

test dataset, which contains diverse ethnicity groups (15 images per each crowdedness
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category).

Evaluation Protocols and Metrics. We evaluate the performance of EagleEye with

the following evaluation protocols and metrics:

•Latency: the time interval between the start and the end of the pipeline execution,

measured on mobile.

• Equal Error Rate (EER): the value in the ROC curve where the false accep-

tance and false rejection rates are identical.

• True Positive (TP) & False Positive (FP): the rate in which the test faces are

correctly/wrongly accepted as the target, respectively, given a fixed threshold.

• Top-K Accuracy: the percentage of images in which the distance between the

target face and the probe is within the top K-th among all faces in the scene (applies

for scenes with the target present). This can also be interpreted as recall for a single

target.

• False Alarm: the percentage of images in which the system falsely detects that

the target is present in the scene (applies for scenes with the target absent).

Comparison Schemes. We compare the performance of EagleEye with the following

comparison schemes:

• 2-step baseline runs the conventional 2-step identification pipeline (MobileNetV1-

based RetinaFace and ResNet50-based ArcFace) all on the mobile sequentially.

• 3-step baseline runs our proposed 3-step identification pipeline (MobileNetV1-

based RetinaFace, ICN, and ResNet50-based ArcFace) all on the mobile sequentially.

• Full offload fully offloads the image to the cloud over LTE and runs the 3-step

identification pipeline. The image is sent either raw or after JPEG compression. Note:

we run this experiment under a normal LTE performance (≈11 Mbps), and it is likely

that the performance of full offloading could be worse than what we report in crowded

outdoor environments.
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Figure 4.17: EagleEye performance overview.
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Figure 4.18: Performance of Identity Clarification Network.

4.8.2 Performance Overview

We first evaluate the overall performance of EagleEye compared with alternatives for

High scenes. Figure 4.17 shows the results. Firstly, as shown in Figure 4.17(a), Eagle-

Eye outperforms the latency of the 3-step baseline by 9.07× (with only 108 KBytes

of data offloaded to the cloud). Also, it shows the highest Top-K accuracy (80% of

Top-2 accuracy vs. 53% for the 2-step baseline) at the reasonable increase of false

alarms (Figure 4.17(b) and (c)). A reason for the increase of the false alarm is that

our dataset contains the faces of the same ethnicity group, increasing the chance of

similar-looking identities with the target. For the WIDER Face dataset which contains

more diverse ethnicity groups, we did not observe any false alarm increase. Note that

the accuracy and false alarms are better with Medium and Low scenes, as shown in

Figure 4.25.

Interestingly, while fully offloading JPEG-compressed images achieves the small-

est latency, we observe that its Top-2 accuracy drops to 50% as shown in Figure 4.17(b),

as compression artifacts hinder reconstruction performance of ICN and recognition

network. We could apply video compression (e.g., H.264) to minimize latency more,

but it would further degrade performance as it adopts motion vector-based inter-frame

encoding, incurring additional distortion in the faces. As compression artifact reduc-
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(a) 14×14. (b) Baseline

ICN.

(c) Ideally fine-

tuned.

(d) Fine-tuned

to identity #6

(orange).

Figure 4.19: Feature map visualization for ICN.
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Figure 4.20: Back-

ground filtering.

tion is a challenging problem, recent attempts have been made to design specialized

DNNs for it [142, 143]. Thus, we conjecture that solving this issue will not be trivial

and leave detailed investigation as future work.

4.8.3 Identity Clarification Network

We evaluate the performance of ICN with a varying number of probes used for Identity-

Specific Fine-Tuning. Figure 4.18 shows the results for (a) ideal cases (ICN trained for

individual faces) and (b) our scenarios (ICN trained with a target identity), respectively.

For the ideal case, ICN recovers the accuracy of 14×14 faces similar to 112×112 with

about 5 probes only. For our scenarios, as the number of probes increases, ICN injects

more facial details of the target to the input LR face, significantly increasing the chance

to identify the target with a relatively small increase in the FP. Figure 4.18(b) shows

that the gain in TP (78%) outweighs that of FP (14%). We further analyze the rea-

sons for accuracy improvement using a simple example with the 8 identities (the same

setting as in Chapter 4.3.2). From the 14×14 LR faces whose features severely over-

lap with each other (Figure 4.19(a)), the baseline ICN (without fine-tuning) clusters

each identity’s features more tightly, but some overlapping regions still remain (Fig-

ure 4.19(b)). When enhancing each LR face with ICN fine-tuned with corresponding

probes, we observe each feature cluster is separated even more clearly (Figure 4.19(c)).

In the case of applying ICN fine-tuned to target identity #6 (orange samples), Fig-
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(a) 112×112. (b) 14×14. (c) Baseline. (d) Fine-tuned

Figure 4.21: Reconstruction example of ICN.

ure 4.19(d) shows that the samples corresponding to the target are grouped to form a

tight cluster. While other identity groups are pulled towards the target, the cases where

the pulled samples overlap with those of the target (false positive) are not dominant.

Finally, Figure 4.21 shows the face reconstruction examples of ICN. Baseline ICN

reconstructs a face quite similar to the ground truth but lacks some fine attributes (e.g.,

wrinkles) in the ground truth face. Identity-Specific Fine-tuning enables the ICN to

instill such details in the reconstructed face, thus enabling accurate recognition.

4.8.4 Content-Adaptive Parallel Execution

4.8.4.1 Edge-Based Background Filtering

Next, we evaluate the performance of our Edge-Based Background Filtering method.

Figure 4.20 shows the detection rate and latency gain as we increase the edge intensity

threshold. Higher threshold results in higher latency gain, but at the cost of loss in

detection rate. We observe threshold between 0.05 and 0.08 balances the tradeoff, and

we empirically set it as 0.08 which achieves 1.76× latency gain with 8.7% loss in de-

tection rate. Figure 4.22 shows an example of image blocks being filtered for different

thresholds (covered in black in Figure 4.22(c)–(e)). With a higher threshold, blocks

containing large faces starts to get ruled out. The tradeoff can be more aggressively

made if our system can only focus on identifying distant, small faces while relying on

users to recognize large, closer faces.

48



(a) Raw frame. (b) Detected edges. (c) 59% left. (d) 30% left. (e) 8% left.

Figure 4.22: Example operation of Edge-Based Background Filtering.
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Figure 4.24: Spatial Pipelining performance.

4.8.4.2 Variation-Adaptive Face Recognition

To evaluate the effectiveness of Variation-Adaptive Face Recognition, we synthesize

a group of faces, which contains 10 samples per each case classified in Figure 4.14.

We compare our technique (adapting the recognition pipeline based on pose and res-

olution) with the following baselines: (i) running a lightweight recognizer (Mobile-

FaceNet [136]) on all faces (denoted as Base light), (ii) running ICN and a heavy

recognizer (ResNet50-based ArcFace [18]) on all faces (denoted as Base full), (iii)

adaptively applying the lightweight and heavy recognizers based on the resolution

only (denoted as Res-only). We did not apply our parallel and pipelined execution for

this experiment so that only the relative comparisons are meaningful.

Figure 4.23 shows that our approach achieves comparable accuracy with Base full,

while reducing the latency by 1.80×. On the contrary, Base light and Base full suf-

fer from low accuracy and significantly high latency, respectively. The Res-only yields

fairly high accuracy gain with small latency overhead, but the accuracy remains lower

than Base full as large profile faces processed by light MobileFaceNet results in inac-

curate decisions.
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Figure 4.25: End-to-end latency for varying crowdedness.

4.8.4.3 Spatial Pipelining

Figure 4.24(a) shows the performance of Spatial Pipelining on High scenes. Our pipelin-

ing yields 5.03× acceleration compared to the baseline that runs face detection and

processes faces with Variation-Adaptive Face Recognition sequentially using the mo-

bile GPU (denoted as Sequential).

We further analyze the effect of the number of blocks to parallelize. Figure 4.24(b)

shows the latency of face detector with varying number of blocks. We need to di-

vide the image in an overlapping manner to prevent faces split across blocks, which

increases computational overhead due to repetitive face detection on the overlapping

regions. Thus, the larger the number of blocks, the higher the latency overhead. Con-

sidering the tradeoff between such cost and gain for parallelism, we divide the image

into 4×4 blocks by default.

4.8.5 Performance for Varying Crowdedness

Figure 4.25(a) shows the end-to-end latency comparison of 3-step baseline and Ea-

gleEye. The latency of EagleEye remains similar regardless of crowdedness, mainly

because we pipeline and parallelize the execution on mobile and cloud. However, the

latency of 3-step increases with more crowded scenes since recognition latency in-

creases proportionally to the number of faces. Accordingly, we conjecture that the

latency gain will be greater as crowdedness increases even more. Furthermore, current

bottleneck remains at the face detection stage, and we expect that the latency will be

further reduced as face detectors become more optimized.

Figure 4.25(b) shows the latency breakdown on High scenes for gradually adding
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Figure 4.26: Latency evaluation on Google Pixel 3 XL.

on the components of EagleEye: Variation-Adaptive Face Recognition (A), Spatial

Pipelining (P), and Edge-Based Background Filtering (E). Combining each component

yields a synergetic gain, achieving 9.07× acceleration compared to the 3-step baseline.

Finally, Figure 4.25(c) shows the Top-3 accuracy and false alarm increase of Ea-

gleEye compared to the 2-step baseline. Overall, EagleEye yields 27.6% accuracy

gain, with accuracy above 80% even for High scenes. Figure 4.25(d) shows that at the

cost of such accuracy gain, EagleEye results in 19.1% increased false alarm. Such

increase is due mainly to the fact that our dataset contains the people with the same

ethnicity, and we observe no increase in false alarm in case of WIDER Face dataset.

4.8.6 Performance on Other Mobile Devices

Lastly, we evaluate the end-to-end latency on Google Pixel 3 XL to validate the perfor-

mance of EagleEye on other mobile devices. The inference times of MobileNetV1-

based RetinaFace, ICN, ResNet50-based ArcFace, and MobileFaceNet are 918, 225,

193, 18 ms, respectively. Figure 4.26 shows that the latency performance of EagleEye

and gain compared to 3-step baseline are similar (8.14× for Hard scenes) to previous

results, indicating that EagleEye shows consistent performance on other devices.
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Chapter 5

Pendulum: Network-Compute Joint Scheduling for Scal-

able Live Video Analytics

5.1 Introduction

In this Chapter, we design Pendulum, an end-to-end system for robust and efficient

cloud offloading-based live video analytics. Live video analytics pipeline is composed

of two stages: (i) Network stage: video streaming over network, and (ii) Compute stage:

real-time Deep Neural Network (DNN) inference on edge/cloud server. The key to

achieving high accuracy and throughput is to flexibly adapt the pipeline depending on

dynamic workload and resource availability, affected by scene complexity [1, 32, 38],

network bandwidth [83], and server contention [10]. Here, new important challenges

arise from complex patterns of alternating resource bottlenecks across the network

and compute stages. For an example of face identification application, we observe

the video bitrate (changed by channel status and contention) and required DNN infer-

ences (changed by the number and pose of faces in the scene) have a weak Pearson

correlation coefficient of -0.15 (Chapter 2.2.3), causing frequent alternation between

bandwidth and GPU bottlenecks, necessitating the need for joint adaptation of the two

stages.
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Prior live video analytics systems support adaptation to fluctuating resources, but

they are limited to single-stage scheduling (network [4, 73, 76, 83, 85, 89] or com-

pute [10, 38]).1 Their goal is to minimize the target resource usage (either network or

compute) with minimal accuracy drop, assuming that the other resource is sufficiently

provisioned. They have severe limitations in alternating resource bottleneck scenar-

ios (Chapter 5.2.2). First, they suffer from throughput/accuracy degradation when the

other stage is bottlenecked. Also, they likely require sufficient provisioning of untar-

geted resources, causing unnecessary costs and resource wastage.

To overcome the limitations of prior works, Pendulum features a network-compute

joint scheduling mechanism (Chapter 5.3.1). When a stage is bottlenecked, we not

only reduce the bottlenecked resource usage but also leverage the surplus resource in

the remaining stage for accuracy compensation. It widens the adaptation space (e.g.,

further reducing the minimum bitrate satisfying the accuracy requirement), achieving a

more stable and higher throughput/accuracy over single-stage scheduling. It also helps

utilize network and compute resources in a balanced way, preventing unnecessary re-

source over-provisioning (for instance, a cloudlet [144] scenario in Chapter 5.2.1).

Joint scheduling is generalizable and can be integrated into many prior single-stage

systems (Chapter 5.3.3).

To design our mechanism, we newly discover the tradeoff relationship between

video bitrate and DNN complexity (i.e., heavier DNN can compensate the accuracy

drop from low bitrate and vice versa). Heavier DNNs (with more layers and filters) are

capable of capturing more complex features [33], thus achieving high accuracy in low-

bitrate videos. A key factor is the receptive field size, proportional to the number of

layers [145,146]; larger receptive field enables a contextual understanding of the scene

(e.g., detects the object not just by looking at it but also the objects around it). We
1We refer to the single-stage scheduling as controlling the network or compute resources indepen-

dently, albeit it indirectly affects the remaining stage (e.g., adapting video frame rate or resolution changes

DNN inference latency or number of inferences).
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quantitatively verify this over two tasks (object detection and semantic segmentation)

and various DNNs (Chapter 5.3.2).

Joint scheduling incurs non-trivial challenges.

• Scheduling Knob Selection. Joint scheduling requires a careful selection of

control knobs considering inter-dependency between network and compute stages.

Prior single-stage systems consider different knobs: (i) frame rate, resolution, quan-

tization for network stage, and (ii) DNN backbone for feature extraction (e.g., heavy

ResNet, lightweight MobileNet), weight quantization, and input enhancement (e.g.,

super-resolution) for compute stage. However, it is non-trivial to control them con-

currently as controlling a single knob affects not just the corresponding stage but also

the other, undesirably altering the accuracy and resource demand. In addition, some

knobs require considerable preparation effort (e.g., model re-training), limiting their

scalability.

• Lightweight Profiling. Joint scheduling requires continuous tracking of three-

way tradeoffs among network, compute, and accuracy, which imposes a severe chal-

lenge to the scheduling system design. The main difficulty comes from dynamic changes

in the tradeoff patterns depending on the video content (e.g., object speed, lighting con-

dition) (Chapter 5.5.2). Due to the black-box nature of DNN inference, it is inevitable

to profile them by running the DNNs over 2D (bitrate, DNN) configuration space. For

example, a full search of 5 bitrates×7 DNNs takes 3.4s on an RTX 2080 Ti GPU.

• Scheduling Policies and Algorithms. New scheduling policies and algorithms

are necessary to fully utilize the joint scheduling mechanism. In particular, allocat-

ing both network and compute resources across multiple users to (i) resolve resource

contention and (ii) minimize total cost is a multi-dimensional knapsack scheduling

problem, known as NP-hard (Chapter 5.6.2).

We address challenges with following components.

• Joint Scheduling Mechanism (Chapter 5.5). We first identify (Quantization

Parameter (QP), backbone) pair as the most suitable knobs for joint scheduling (Chap-
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ter 5.5.1), considering (i) control independency (i.e., affecting the target stage only),

and (ii) preparation overhead. First, QP is easy to adjust in widely-used video codecs

and it controls bitrate independently of the compute stage; reducing frame rate or reso-

lution implicitly reduces the compute resource usage (through the number of DNN in-

ferences and latency), complicating the control of compute resources in joint schedul-

ing. Second, backbone scaling involves a minimum task- and model-specific efforts

(e.g., loss function design) compared to others.

Next, we develop a resource-efficient tradeoff profiler with two techniques (Chap-

ter 5.5.2). First, we utilize an ensemble of lightweight features that efficiently captures

scene change (e.g., object motion, lighting condition change) to trigger profiling only

when the tradeoff curve changes. Second, we develop a novel weighted multi-knob ac-

curacy interpolation technique to efficiently profile the 2D config space by measuring

the accuracy of a few (QP, backbone) pairs and estimating the accuracy of the rest. Our

key insight is that the accuracy gain from increasing one knob value saturates as the

remaining knob value becomes higher. We minimize the profiling overhead by up to

93.9% (1.5% of serving cost) and 40% compared to fixed-period full search profiling

and state-of-the-art Chameleon [38] with negligible accuracy drop.

• Multi-User Joint Scheduler (Chapter 5.6). We design an Iterative Max Cost

Gradient algorithm to obtain an approximate solution with minimal computational

overhead (Chapter 5.6.3). Specifically, it (i) finds the user-wise optimal configs and

(ii) iteratively adjusts each user’s config with the maximum cost gradient (i.e., adjust-

ing the user with the maximum expected decrease in bottleneck resource usage by

increasing a unit usage of the other resource). Our algorithm obtains a near-optimal

solution with efficient O(M ·N) time complexity.

Our key contributions are summarized as follows:

• To our knowledge, Pendulum is the first live video analytics system with network-

compute joint scheduling.

•We design an end-to-end system for joint scheduling, composed of (i) an efficient
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Figure 5.1: Scenario: cloudlet-based city monitoring.

and scalable knob control mechanism, (ii) a lightweight tradeoff profiler, and (iii) a

multi-user joint resource scheduler.

•We conduct extensive evaluation on various datasets and state-of-the-art DNNs.

Pendulum achieves up to 0.64 mIoU gain (from 0.17 to 0.81) and 1.29× higher

throughput compared to state-of-the-art single-stage scheduling systems.

5.2 Motivation

5.2.1 Target Scenarios and System Goals

Scenario. We aim to apply our joint scheduling mechanism for a wide range of video

analytics applications, especially in Multi-Access Edge Computing (MEC) scenarios

illustrated in Figure 5.1. For instance, a police agency deploys CCTVs and officers

with AR glasses/smartphones in a city for monitoring [32] (e.g., criminal chasing,

jaywalking detection, traffic monitoring).2 It connects the cameras through a shared

radio access network (e.g., private 5G [147, 148]) for video streaming, and deploys a

cloudlet (shared edge GPU server) [144] next to the base station for processing.

System Goals. We aim to achieve the following goals.

• Real-time Processing. We aim at end-to-end scheduling across end users and

analysis server for real-time video processing (e.g., 30 fps throughput) while satisfying

the app-specified accuracy requirement.
2We are collaborating with multiple Asian companies for deployment of our system for face-

recognition-based real-time airport check-in and other MEC scenarios.
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Figure 5.2: Bitrate and workload (# ob-

jects) for different scenes.

Figure 5.3: Bitrate and mIoU of network-

only scheduling (b: bottleneck, nb: no bot-

tleneck).

• Soft Real-Time Latency. We aim at soft real-time latency (e.g., <100 ms) so

that the analysis result is delivered to users promptly for further actions (e.g., bounding

box displayed on screen for officers to confirm).

• Cost Minimization. While achieving real-time throughput, our goal is to min-

imize the system operational cost. Specifically, network and compute costs vary de-

pending on service providers (e.g., 5G 1 Mbps streaming: $0.36 [149] to $0.54 [150]

per hour, V100 GPU: $0.74 [151] to $0.91 [152] per hour). We aim to efficiently

schedule network/compute resource usage to avoid bottlenecks while also avoiding

over-provisioning.

• Minimal App Modifications. For generality, we aim at minimal modifications

on the app’s analytics pipeline (e.g., video codec, DNN model). Especially, we aim to

avoid app/task-specific model re-training or additional model preparation.

5.2.2 Limitations of Single-Stage Scheduling

Limited Adaptation Space. It is challenging to simultaneously achieve high accuracy

and throughput by controlling only a single stage of the pipeline. Figure 5.3 shows an

example operation timeline (video encoding bitrate and accuracy (mean Intersection

over Union, mIoU)) of EAAR [4] (network-only scheduling with dynamic RoI en-

coding and motion vector-based frame skipping) on a MOT17 [31]-04 video. EAAR

effectively optimizes the video bitrate to ≈5.68 Mbps with minimal mIoU drop com-
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Figure 5.4: Joint scheduling example for

network bottleneck scenario.
Figure 5.5: Illustration of the impact of

the receptive field.

pared to 8 Mbps encoding (EAAR (nb)). However, when the network bandwidth drops

below its capability, throughput/accuracy drop is inevitable. For example, when the

bandwidth is throttled to 2 Mbps at t=10s (using tc [153]), reducing the encoding bi-

trate accordingly incurs a significant mIoU drop (EAAR (b)).

Difficulty of Resource Planning. It is also challenging to plan the right amount of

resource usage for the remaining stage to avoid the resource bottleneck or wastage

from under/over-provisioning. For example, with the same setting as in Figure 2.2(b),

using 6 GPUs incurs a 22% latency violation rate, while using 9 GPUs incurs 35%

resource wastage. Elastic resource provisioning incurs higher operational costs or may

not even be possible for edge server scenarios.

5.3 Approach

5.3.1 Key Idea: Joint Scheduling

Our approach is to jointly schedule the network and compute resources to achieve

both high accuracy and throughput. Figure 5.6 shows a comparison of single-stage

and joint scheduling. Network-only scheduling (which only controls the video bitrate

with a fixed GPU utilization) can only reduce the bitrate up to b1 without violating the

app accuracy requirement (ACCth). If network bandwidth drops below b1, network

bottleneck occurs, dropping the throughput. However, joint scheduling utilizes addi-

tional compute resources (up to the available budget) to further reduce the bitrate to

as low as b2, thus being more robust to bandwidth drop. Figure 5.4 shows an exam-
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Figure 5.6: Single-stage vs. joint scheduling comparison.

ple operation timeline for the network bottleneck scenario. At the start when network

bandwidth is sufficient, we stream the video at a high bitrate (e.g., 5 Mbps) and run

the EfficientDet-D0 [106] object detector. When the bandwidth drops, we reduce the

bitrate accordingly to 0.5 Mbps so that the video can be streamed in real-time. To com-

pensate the accuracy drop from reduced video quality, we leverage additional compute

resources by running the heavier EfficientDet-D6. Similarly, we reduce the DNN com-

plexity and increase the bitrate in the case of compute bottleneck.

5.3.2 Why is Joint Scheduling Possible?

We analyze why there is a tradeoff relationship between video bitrate and DNN com-

plexity. Specifically, “Why can heavier backbone compensate the accuracy drop from

low bitrate (and vice versa)?” Heavy DNN with a large number of layers and filters

can capture diverse complex features [33]. Especially, large receptive field size (i.e.,

how large an area a DNN analyzes to detect objects) [145] helps achieve high accuracy

in low-bitrate videos. The receptive field of a DNN is proportional to the number of

layers (e.g., O(
√
N) [146]); a DNN with a large receptive field size can analyze the

scene context with a wider view. Figure 5.5 shows an example. For low-bitrate videos,

it is highly challenging to recognize a car just by looking at it. However, with a large

receptive field, we can analyze the scene context (e.g., road lane, nearby car) and easily

classify the blurry object as a car.
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(a) 1× GT box. (b) 2× GT box. (c) 3× GT box.

Figure 5.7: Example detection results (box and confidence) for different crop sizes.

(a) EfficientDet-D0. (b) EfficientDet-D6.

Figure 5.8: Detection accuracy in low-bitrate video.

We quantitatively verify this on two widely-used tasks (object detection and se-

mantic segmentation) using DAVIS17 [154] video. First, we run EfficientDet [106]

detector with two backbones (D0 and D6 with 49 and 134 layers) on image patches

cropped from the low-bitrate video around the ground truth bounding box (to emulate

the effect of the receptive field by restricting the maximum area a DNN can analyze)

(Figure 5.7). Figure 5.8(a) shows that EfficientDet-D0’s accuracy remains low, regard-

less of the crop size. However, Figure 5.8(b) shows that EfficientDet-D6’s accuracy

constantly improves with larger crop size, indicating that it leverages its large receptive

field for accurate detection. We observe a similar trend for the semantic segmentation:

Figure 5.9 shows the accuracy for the same video using the FPN [155] with ResNet-

18 and ResNet-101 backbones. Our observation is also well aligned with the findings

in the ML field showing that the models with more layers and filters achieve higher

accuracy and can compensate for lower input resolution [33].
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(a) FPN-ResNet-18. (b) FPN-ResNet-101.

Figure 5.9: Segmentation accuracy in low-bitrate video.

Table 5.1: Applicability of joint scheduling in state-of-the-art single-stage scheduling

systems.

System Mechanism Control knob
Possible joint

scheduling knob

DDS [85]
Two-path streaming
(probe + feedback) Low/high

video/RoI
bitrate

DNN
complexity

EAAR [4]
RoI encoding

(object/background)

AWStream [83]
Content-aware

bitrate adaptation
Video
bitrate

Glimpse [73]
Reducto [76] Frame filtering

Filter
threshold

Tracker
complexity

Chameleon [83]
Content-aware

DNN adaptation
DNN

complexity
Video
bitrate

SPINN [10]
DNN inference

early exit
Early exit

layer

5.3.3 Generality of Joint Scheduling

Joint scheduling is orthogonal to prior single-stage scheduling systems and other op-

timization techniques (e.g., RoI encoding and frame filtering). In this light, it can be

generally integrated into many prior systems. Table 5.1 shows the control knob and

mechanisms of state-of-the-art single-stage scheduling systems along with the possi-

ble joint scheduling knobs we suggest. For example, DDS [85] controls two bitrates

to which the probe and feedback streams are encoded (e.g., 2 and 6 Mbps). In case of

the network bottleneck, along with adjusting the two bitrates (e.g. to 1 and 3 Mbps),
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Figure 5.10: Pendulum system architecture.

we can use a heavier DNN to compensate for the accuracy drop. We also quantita-

tively show the benefits of joint scheduling on existing systems (DDS and EAAR) in

Chapter 5.7.3.

5.4 System Overview

Figure 5.10 shows the system architecture of Pendulum.

Data Flow. End users specify their app QoS requirements (e.g., latency, accuracy)

and stream their live video encoded at the target bitrate specified by the server. Upon

receiving and decoding the frames, the server runs the target DNN inference and ag-

gregates the results.

Control Flow. Server monitors resource availability (users’ network bandwidths, DNN

inference latencies, and GPU utilization), analyzes the network-compute tradeoff, and

schedules the resources across multiple users. Specifically, network and compute re-

sources are joint scheduled by controlling the (QP, backbone) pair (Chapter 5.5.1). To

efficiently track the tradeoff, the profiler (i) dynamically triggers profiling only under

significant scene change and (ii) minimizes the number of configs to search (Chap-

ter 5.5.2). Finally, the multi-user joint scheduler finds a joint resource allocation to

minimize the overall resource cost and resolve contention (Chapter 5.6).
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5.5 Joint Scheduling Mechanism

Pendulum’s joint scheduling mechanism is composed of three components: (i) selec-

tion of control knobs for video bitrate and DNN inference latency (Chapter 5.5.1), (ii) a

runtime resource-efficient profiler that tracks the Pareto-optimal tradeoff configs with

minimal overhead (Chapter 5.5.2), and (iii) a resource availability estimator to narrow

down candidate configs that satisfy the accuracy requirement and resource budget for

runtime scheduling (Chapter 5.5.3). The joint scheduler (Chapter 5.6) is built on top

of these components.

5.5.1 Joint Scheduling Knob Selection

Several knobs have been studied in prior single-stage systems. However, it is non-

trivial to control them jointly, as controlling one knob may affect not just the corre-

sponding stage but the other as well, unexpectedly altering the accuracy and resource

demands. We identify (QP, backbone) pair as the suitable joint scheduling knobs with

our two design criteria: (i) Control Independency (i.e., independently affect the net-

work and compute stages), and (ii) Knob Preparation Overhead (i.e., require minimal

model re-training or additional model preparation).

5.5.1.1 Knobs for Video Bitrate

Bitrate is determined by the following three knobs:

Bitrate ∝ Frame rate×Resolution×Quantization. (5.1)

Several works designed efficient knob control methods for bitrate optimization (e.g.,

frame rate [73, 76–80], resolution [38, 75, 156], quantization [4], or a combination of

all [83]). While all knobs can be used for joint scheduling, we choose pixel quanti-

zation as it does not affect the resource usage of the compute stage and incurs the

smallest overhead on the compute stage.
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Figure 5.11: Joint scheduling performance comparison for different video bitrate knobs

(resolution vs. fps vs. QP).

• Frame Rate. Frame skipping and tracking-based interpolation enable joint schedul-

ing. However, it is non-trivial to prepare an accurate tracking model and the tracking

accuracy tends to drop significantly with fast-changing scenes [157].

• Resolution. Heavier DNNs accurately detects small objects in low-resolution

videos, making the resolution a plausible knob. The resolution, however, makes the

joint scheduling more complicated since it implicitly affects the computing stage by

changing the inference latency and accuracy even when the same DNN is used.

• Pixel Quantization. Quantization enables joint scheduling as analyzed in Chap-

ter 5.3.2. Quantization controls bitrate without affecting the compute stage (as input

size remains the same), as opposed to the other knobs. We control the Quantization

Parameter (QP) commonly exposed in video codecs (e.g., H.264/265).

Quantitative Comparison. Figure 5.11 compares the joint scheduling performance

of different bitrate knobs on BDD dataset [158] (we observe a similar trend on other

datasets as well). When trying to reduce a 720p@30fps video’s bitrate from 8 Mbps

(leftmost bars) to 3 Mbps and compensate the accuracy by increasing the backbone

from EfficientDet-D0 to D6, QP control (rightmost bars) achieves 0.24 and 0.34 higher

mIoU than resolution and fps, respectively. Resolution and fps result in sub-optimal

bitrate-accuracy tradeoff, as reducing them reduces the inference latency or the number

of inferences, negating the effect of joint scheduling.
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5.5.1.2 Knobs for DNN Inference

Inference latency is determined by the following knobs:

Latency ∝ InputEnhancement+Backbone×Quantization. (5.2)

Input enhancement is the preprocessing step (e.g., super-resolution, compression ar-

tifact removal) to improve the frame quality before DNN inference. Quantization is

applied to the DNN weights (e.g., float16, int8) to reduce the computation at the cost

of a small accuracy drop. Backbone refers to the feature extractor of a DNN: it is

characterized by the architecture, number of layers, and channels (e.g., ResNet-50,

MobileNet-0.25). While these knobs can be adopted for joint scheduling, We choose

the backbone scaling as the most suitable knob with the consideration of scalability

across multiple tasks.

• Input Enhancement. Utilizing input enhancement as a scheduling knob limits

the scalability to different tasks, as it requires (i) task-specific model re-design [3], and

(ii) frequent online fine-tuning (e.g., super-resolution performance drops on unseen

contents [88]).

•Weight Quantization. Quantization can serve as a joint scheduling knob but are

practically limited at the moment as it requires task-specific tuning efforts (e.g., value

clipping [159], loss function design [160]) and hardware support. Also, it currently

offers only a limited number of config choices (e.g., float32, float16, int8).

• Backbone. DNNs for various tasks commonly support diverse backbones while

many backbones with accuracy-latency tradeoff are readily available (e.g., ResNet-

18/34/50/101/152, EfficientNet-B0 to B7) [17, 30, 33, 106, 161]. With the minimal

model preparation cost and task supportability, we adopt backbone scaling as the con-

trol knob for DNN inference.
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(a) Static scene, good lighting. (b) Dynamic scene, poor lighting.

Figure 5.12: Tradeoff curves for different scenes. Blue/red points: configs above/below

the accuracy requirement, green curve: Pareto-optimal configs.

5.5.2 Network-Compute Tradeoff Profiler

5.5.2.1 Goals and Challenges

Goal. The profiler’s goal is to analyze the Pareto-optimal tradeoff configs of the user’s

live video stream. We define that a (bitrate, inference latency) config (b, t) is Pareto-

optimal if (b, t) satisfies the accuracy constraint and no other (b′, t) and (b, t′) exists

s.t. b′ < b, t′ < t.

Challenges. Profiling incurs two key challenges.

• Fast-Changing Tradeoff Curve. The tradeoff curve should be constantly pro-

filed at runtime, as it frequently changes over time depending on the scene content.

Figure 5.12 shows an example on a BDD [158] video for 8 bitrates and 7 Efficient-

Det [106] backbones. In a static scene (the car is not moving) with good lighting

conditions (Figure 5.12(a)), it is easy to detect objects from a low-bitrate video with

lightweight backbones. Thus, the Pareto-optimal configs have small b, t values. In con-

trast, the values become larger for dynamic scene (the car is moving) with poor lighting

conditions (Figure 5.12(b)). The changes occur fast; for BDD [158] dashcam videos,

the cost-optimal YOLOv5 [30] backbone for 4 Mbps encoding bitrate changes every

4.4s on average.

• High Profiling Overhead. Each tradeoff profiling event requires a 2D space

search (bitrate and backbone), involving repetitive DNN inference over a frame en-
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coded in multiple bitrates. Frequent profiling (e.g., fixed-interval, periodic [38]) incurs

significant resource overhead. For example, exploring all search space composed of 7

EfficientDet backbones (D0-D6) and 5 QPs over a single frame takes 3.4 seconds on

RTX 2080 Ti GPU. Triggering this every 2 seconds incurs ≈50% overhead compared

to 30 fps inference serving).

5.5.2.2 Dynamic Profiler Overview

Lightweight scene change detector (Chapter 5.5.2) uses lightweight feature ensemble

to trigger profiling only when significant scene change is detected and the Pareto-

optimal configs are expected to have changed. For each triggered frame, Intra-frame

profiler (Chapter 5.5.2) uses a novel weighted multi-knob accuracy interpolation to

avoid exhaustive full search of the 2D config space.

5.5.2.3 Lightweight Scene Change Detector

Two categories of features can be utilized for scene change detection: heavy-but-

accurate high-level (e.g., SIFT [162], SURF [163]) and lightweight-but-noisy low-

level. We adopt a lightweight feature ensemble approach for lightweight scene change

detection. We choose the following features that complementarily capture diverse as-

pects of scene change (camera and object motion, lighting condition). They have a high

correlation with tradeoff curve changes, allowing an effective skipping of unnecessary

profiling (Chapter 5.7.6).

• Camera Motion: Average Motion Vector [4]. We detect scene change if the

sum of average motion vector magnitudes (obtained from video codec without over-

head) from reference to current frames is over th1.

• Object Motion: Bounding Box Drift. We detect scene change if the mIoU

between the serving inference results of reference and current frames is below th2.
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Figure 5.13: Motivation for weighted

multi-knob accuracy interpolation.
Figure 5.14: Profiler performance com-

parison.

• Lighting Condition Change: Color Histogram Difference [14]. We detect

scene change if the chi-square distance of the color histograms between the reference

and current frames is over th3.

We detect scene change if two or more conditions are satisfied. We use MOT [31]

and BDD [158] datasets to empirically fit the thresholds th1, th2, th3 as 0.5.

5.5.2.4 Intra-Frame Profiler

To avoid exhaustive full search of multi-dimensional profiling space, Chameleon [38]

uses a linear multi-knob accuracy interpolation technique. It is based on knob inde-

pendence assumption: accuracy gain from increasing one knob value is independent

of the remaining knobs. Thus, it profiles each axis with fixed remaining-stage values

and interpolates the rest. We improve this as follows.

Weighted Multi-Knob Accuracy Interpolation. Figure 5.13 illustrates our key in-

sight: IoU increase when increasing the backbone from D0 to D6 saturates as the

bitrate is higher (as D0 backbone already finds the object accurately). To take this into

account, weighted multi-knob interpolation works as follows. Assume that we pro-

filed the backbone axis with bitrate fixed to b0. We interpolate the accuracy gain from

increasing the backbone from Dj to Dj+∆ with bitrate bi as

ACC(bi, Dj+∆)−ACC(bi, Dj) = w(bi − b0)×

(ACC(b0, Dj+∆)−ACC(b0, Dj)) for 0 ≤ i ≤ N.
(5.3)
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whereACC(bi, Dj) is the accuracy of the config (bi, Dj), andw(bi−b0) is the weight

factor; note that for Chameleon [38], w(bi− b0) = 1. We model w(bi− b0) as a linear

function with w(0) = 1 and w(bN − b0) = 0.3.

Single-Knob Accuracy Interpolation. Within the single-axis, we search only half

the configs (e.g., even indices) and linearly interpolate the rest. We use golden config

output (i.e., heaviest backbone on highest bitrate) as ground truth, similar to prior

works [38, 76, 83, 85].

Evaluation. Figure 5.14 shows the effectiveness of our profiler: when profiling 4×7

configs (1,2,4,8 Mbps and EfficientDet D0-D6) on BDD dataset, our profiler reduces

the overhead by 79% and 40% compared to full search and Chameleon [38] without

accuracy drop.

5.5.3 Resource Availability Estimator

The profiler provides the joint scheduler (Chapter 5.6) with plausible configs that sat-

isfy the resource budget and app accuracy requirement. For this, the resource avail-

ability estimator continuously monitors resource usage and budget for both network

and compute stages. For network stage, we estimate the bandwidth using the received

packet sizes and timestamps with Exponentially Weighted Moving Average (EWMA)

filtering. Configs with bitrate below the bandwidth are marked as plausible. For com-

pute stage, the DNN inference latencies of all candidate backbones are first profiled

offline (stored as a look-up table) and updated online upon each inference comple-

tion using EWMA filtering. Configs with latency that enable real-time processing are

marked as plausible (e.g., with a single GPU, <33 ms latency is required for 30 fps

video).

5.5.4 Other Design Considerations

Batching and Multithreading. For precise inference latency control (which is crucial

for resource availability estimation and scheduling) and real-time latency guarantee
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(Chapter 5.2.1), we do not use batching nor multi-threading; multi-threading achieves

only 25% throughput improvement at the cost of ≈100× tail latency [164].

Exception Handling. Pendulum may not find any configs to schedule in two cases.

The first is when a user has no accuracy-satisfying config under resource budget. In

such a case, we lower the bottlenecked resource usage (for real-time processing) and

increase the remaining stage usage to maximum (for best-effort accuracy). The second

is when both stages are bottlenecked (rarely happens as analyzed in Chapter 2.2.3). In

such a case, Pendulum notifies the user of the achievable accuracy under current re-

sources for further actions (e.g., lower accuracy requirement or secure more resources).

Pipelined and Parallel Re-Encoding. The live video stream should be re-encoded

into multiple bitrates for tradeoff profiling. To minimize the re-encoding delay, we (i)

parallelize the multi-bitrate re-encoding process, as well as (ii) pipeline it with the live

video decoding process. Specifically, the server spawns multiple video codecs for re-

encoding (one for each target bitrate) per user upon his connection. When the server

receives each live video frame, it feeds the frame to the re-encoding codecs so that

the frame is re-encoded into multiple bitrates in parallel while the next live frame is

received.

Parallel Profiling Inference. Each tradeoff profiling event involves multiple DNN

inferences (across multiple bitrates and backbones). The profiler runs the inferences

over multiple GPUs in parallel to minimize the delay.

Multi-GPU Load Balancing. The scheduler balances the inference workload across

GPUs to avoid cases where some GPU(s) are overloaded (e.g., with heavy backbones)

and cause long processing latency and idle time on other GPUs. Specifically, the sched-

uler keeps track of the inference request queue of the GPUs, and schedules the new

request to the GPU whose expected finish time is the shortest.
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(a) User A’s tradeoff. (b) User B’s tradeoff.

Figure 5.15: Motivation of multi-user joint scheduling: additional bandwidth required

to compensate ∆t inference latency differs depending on the user’s tradeoff curve.

5.6 Multi-User Joint Scheduling

5.6.1 Overview

Our goal is to jointly allocate resources across users so that (i) resource constraints

are satisfied, and (ii) overall resource cost is minimized. While multi-user resource

scheduling has been widely studied in the context of DNN inference serving at cloud

servers [1, 91], joint scheduling of the network and compute resources has rarely been

considered. Figure 5.15 motivates the importance of good joint scheduling. Assume

two users (with different tradeoff curves) use the configs marked as yellow stars. Then,

compute bottleneck occurs, and the total inference latency should be reduced by ∆t.

Adjusting User B’s bitrate (for accuracy compensation) requires a significantly more

increase than adjusting User A’s, likely resulting in inefficient overall solutions.

Finding the optimal resource allocation across multiple users is challenging, mainly

due to the large search space. Specifically, the allocation problem involves an explo-

ration of O(MN ) options for N users (e.g., 10s-100s), each with M configs (e.g., 49

for 7 candidate backbones and bitrates, respectively). Also, different tradeoff curves

of individual users and scenes make it non-trivial to narrow down the solution space

efficiently. To achieve our goal, we formulate a cost minimization problem (Chap-

ter 5.6.2) and design a greedy scheduling algorithm to find an approximate solution

(Chapter 5.6.3).
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Algorithm 2 Iterative Max Cost Gradient Algorithm
Inputs: Accuracy-satisfying configs Ci = {(bi,j , ti.j)} for users 1, ..., N , resource budgets

Bnetwork, Bcompute.

Output: Cost-minimizing resource allocation S = {j1, ..., jN}

1: S ← {0, ..., 0} i in 1, ..., N Chapter tate S[i]← GetCostOptimalConfig(Ci)

DetectBottleneck(S, Bnetwork, Bcompute) == true

2: j ← FindMaxCostGradientUser(C, S)

3: S[j]← AdjustConfigByStep(C[j], S[j])

4: return S

5.6.2 Scheduling Problem Formulation

User i (= 1, ..., N) has Ki accuracy-satisfying configs {Ci,j = (bi,j , ti,j)}(j =

1, ...,Ki). User i processes fi fps video and runs ni inferences per frame (i.e., total

inference time per second = fi · ni · ti,j). User i experiences BWi Mbps bandwidth,

and the server has NGPU GPUs, with maximum utilization time tth. The scheduler

periodically finds the cost-minimizing allocation J∗ = {j∗1 , ..., j∗N} is obtained by

solving

min
J

(
CostNet

(∑
i

bi,j

)
+ CostComp

(∑
i

ti,j

))
s.t.

∑
i

fi · ni · ti,j ≤ tth ·NGPU , bi,j ≤ BWi ∀i = 1, ..., N

(5.4)

The first constraint enforces that the total inference times do not exceed the compute

budget. The second constraint enforces that each user’s selected bitrate does not exceed

his current network bandwidth so as to avoid excessive network transmission delay.3

Note that we only model the serving cost as the tradeoff profiling cost is negligible;

they may temporarily affect per-frame latency, but the impact on average throughput

is negligible (e.g., 1.5% of serving cost as shown in Chapter 5.7.6). We model the cost

functions using linear billing model [165, 166].
3We currently consider BWi as the given value (e.g., allocated by the MAC scheduler at the base

station and estimated by the resource monitor separately). In case the operator has control over the

RAN/Core, BWi can also be dynamically allocated across users.
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5.6.3 Scheduling Algorithm

The formulation falls into the multi-dimensional knapsack problem, which is known

to be NP-hard. We design a Iterative Max Cost Gradient Algorithm which (i) first

finds the user-wise optimal configs and (ii) incrementally adjusts the allocation until

bottleneck is resolved. This heuristic effectively finds a near-optimal solution with the

search space reduced from O(MN ) to O(M ·N).

Algorithm 2 describes the operation of the Iterative Max Cost Gradient algorithm.

The scheduler takes the most up-to-date profiled accuracy-satisfying tradeoff configs

{Ci,j} for each user i along with the resource budgetsBnetwork andBcompute as input,

and outputs the cost-minimizing resource allocation S. First, it finds user-wise cost-

optimal configs (lines 1–1). Then, it checks if the selected configs exceed the resource

budgets. If a bottleneck is detected (line 1), it iteratively adjusts the config of the user

with maximum cost gradient by a step until the bottleneck is resolved (lines 2–3).

The cost gradient is defined as how much the bottleneck stage’s resource cost can

be reduced by increasing the remaining stage’s cost. For example, if the network is

bottlenecked, User i (with currently selected config j)’s cost gradient CGi is

CGi =

∣∣∣∣Cnetwork · (bi,j+1 − bi,j)
Ccompute · (ti,j+1 − ti,j)

∣∣∣∣ , (5.5)

assuming {(bi,j , ti,j)} is sorted ascending order of t.

Figure 5.16 shows an example for three users. Assume that the user-wise cost-

optimal configs are black crosses. If the bitrate sum exceeds the network budget, the

scheduler first reduces the bitrate of User 2 who has the highest cost gradient (1.5)

(Iter #1). The scheduler next chooses User 2 whose cost gradient is the largest (Iter

#2). The process repeats until the bottleneck is resolved.
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Figure 5.16: Iterative Max Cost Gradient algorithm operation example (2 iterations,

CG: cost gradient).

Table 5.2: Datasets for evaluation.

Camera Content Scene Change # Videos

MOT [31] CCTV, Handheld Streets Moderate 5

BDD [158] Dashcam City road Fast 6

Game
(self-collected) Dashcam

Racing
game Very fast 10

5.7 Evaluation

5.7.1 Setup

System Implementation. We use TensorFlow 2.6.2 C api + CppFlow [167] and Py-

Torch 1.10.1 C++ api for DNN inference. We use Secure Reliable Transport (SRT) [168]

for live video streaming. We use FFMpeg 4.1.9 and CUDA-accelerated H.264 for

video encoding and OpenCV 4.4.0 for image processing. The server is implemented

on a Supermicro SuperServer 4029GP-TRT2 with Intel Xeon Gold 5128 CPU and 8×

RTX 2080 Ti GPUs (shared for serving and profiling).

Datasets. We use three datasets with different scene change speeds (Table 5.2): five

30fps videos (02, 04, 09, 10, 11) for MOT [31] (moderate), 6 videos from BDD [158]

(fast), and self-collected racing game videos from YouTube (very fast). All videos are

scaled to 720p. For videos without ground truth labels, we use golden config (heaviest

backbone, highest bitrate) outputs.

Tasks and DNNs. We use two DNN tasks: object detection and semantic segmenta-
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tion. For detection, we use YOLO-v5 [30] with 5 backbones (n/s/m/l/x), and Efficient-

Det with 7 backbones (D0-D6) [106]. For segmentation, we train FPN [169] with 7

EfficientNet backbones (B0-B6) [33] on BDD [158]. All backbones can be loaded on

a single GPU (e.g., 6.5 GB for 7 EfficientDet backbones, 10.4 GB for 7 FPN back-

bones). Unless stated otherwise, we report performance using EfficientDet.

Bottleneck Generation. We use Linux tc [153] to shape the network bandwidth and

incur a network bottleneck. We linearly scale the DNN inference latency by a slow-

down factor (by injecting delay after inference similar to previous work [10]) to emu-

late the compute bottleneck.

Single-Stage Baselines: Static uses a fixed (bitrate, backbone). DDS [85] uses two-

path streaming (low-quality probe frame + high-quality feedback for regions with low-

confidence inference results). EAAR [4] uses dynamic RoI encoding (high quality

only for regions where objects existed in the previous frame) and motion vector-based

frame filtering. Reducto [76] uses pixel/edge/area feature difference-based frame fil-

tering (feature type and bitrate-satisfying threshold are offline profiled per each task

and dataset). Backbone Adaptation (BA) only adapts the DNN backbone (based

on our profiler in Chapter 5.5) and uses a fixed bitrate. This is equivalent to single-

knob Chameleon [38]. We also show joint scheduling gain in DDS and EAAR (Chap-

ter 5.7.3).

Multi-Stage Baseline: Pendulum-Decoupled is a network-compute-decoupled joint

scheduler. Upon network bottleneck, all users reduce their bitrates at a same scale until

bottleneck is resolved. Then, the server compensates the accuracy drop by choosing

the cost-optimal backbones that satisfy their accuracy requirement.

Metrics: Throughput (fps) is the number of frames processed per each 1s window.

Albeit it can fluctuate due to processing latency jitter, the average should match the

input frame rate (e.g., 30 fps) to avoid frame drop.
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(a) MOT (moderate speed). (b) BDD (fast speed). (c) Game (very fast speed).

Figure 5.17: Throughput-accuracy comparison in network bottleneck scenario.

5.7.2 End-to-End Improvement

Throughput-Accuracy Performance. Figure 5.17 compares the throughput-accuracy

of Pendulum against baselines across three datasets. Ellipses show the 1-σ range of

the results. We throttle the network bandwidth from 20 to 3 Mbps after 4 seconds

after the streaming start. Static, which uses a fixed (4 Mbps, EfficientDet-D1), suf-

fers from throughput drop due to network bottleneck. Overall, Pendulum consistently

achieves ≈30 fps throughput and higher accuracy compared to baselines: up to 0.64

mIoU gain (Game, Pendulum: 0.81 vs. EAAR: 0.17). The performance of baselines

varies depending on the dataset. For MOT with moderate scene changes, all baselines

effectively optimize the bitrate to below 3 Mbps (e.g., EAAR: 2.98 Mbps), achieving

comparable accuracy to Pendulum. However, for BDD and Game with faster scene

change, the accuracy drops significantly, especially for EAAR and DDS. For EAAR,

object region from previous frame becomes highly stale in fast-changing scenes. For

DDS, fast-changing video encoded in a low-bitrate probe stream (e.g., 1 Mbps) suf-

fers from severe frame quality drop, resulting in inaccurate DNN inference and feed-

back frame request. Consequently, they both end up streaming the entire frame in

low-quality. Pendulum achieves higher mIoU even when DDS and EAAR always use

the heaviest D6 backbone (e.g., 0.71 vs. 0.49, 0.48 in BDD).

Frame-wise Latency. Pendulum also achieves low frame-wise latency. Figure 5.18

compares the frame-wise latency of DDS and Pendulum. Pendulum yields <100 ms

latency, much smaller than DDS involving two frame transmissions and DNN infer-

ences per frame.
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Figure 5.18: Frame-wise

latency comparison.
(a) DDS vs. DDS-joint, BDD. (b) EAAR vs. EAAR-joint, BDD.

Figure 5.19: Joint scheduling on state-of-the-art systems.

(a) YOLOv5 (detection), MOT. (b) FPN (segmentation), BDD.

Figure 5.20: Performance across various tasks & DNNs.

Figure 5.21: Performance

in compute bottleneck

(BDD).

5.7.3 Joint Scheduling on SOTA Systems

We next evaluate joint scheduling gain on state-of-the-art network-only scheduling

systems: DDS and EAAR. When network bottleneck occurs (same as Chapter 5.7.2),

DDS-joint and EAAR-joint reduce the bitrates accordingly and increase the DNN

backbone from EfficientDet-D1 to D6 (increment can be optimized by profiling). Fig-

ures 5.19(a) and (b) show the results on the BDD dataset. Joint scheduling achieves

0.17 and 0.20 higher mIoU than baseline DDS and EAAR, respectively, showing the

generality of joint scheduling.

5.7.4 Performance on Other Models & Tasks

YOLOv5 (Detection). We repeat the same experiment as in Figure 5.17(a), but with

YOLOv5 backbones. We observe a similar trend: Pendulum achieves 0.17, 0.32 and

0.52 higher mIoU than Reducto, EAAR, and DDS, respectively. Note that DDS’s

mIoU is lower than when using the EfficientDet backbones, as the lightweight YOLOv5
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(a) Bitrate and backbone. (b) Throughput and mIoU.

Figure 5.22: Pendulum operation in compute bottleneck.

Figure 5.23: Profiler per-

formance breakdown.

backbone yields less accurate feedback regions on low-bitrate videos.

FPN (Segmentation). Figure 5.20(b) shows that Pendulum achieves similar perfor-

mance for FPN (e.g., ≈30 fps throughput with 0.19 higher mIoU than Reducto).

5.7.5 Performance in Compute Bottleneck

Throughput-Accuracy. Figure 5.21 shows the performance of Pendulum in com-

pute bottleneck scenario on MOT. We increase the inference latency slowdown factor

from 1× to 2× 4 seconds after the app starts. Static (2 Mbps, EfficientDet-D6) suf-

fers from throughput drop. Compared to Reducto and BA which only reduce the DNN

workload (either by reducing the number of frames or backbone), Pendulum effec-

tively increases the bitrate (from 1.98 to 5.42 Mbps) resulting in 0.12 higher mIoU and

1.29× higher throughput.

Operation Timeline. Figure 5.22 shows an example operation timeline of Pendulum

in compute bottleneck scenario for a BDD video. Figure 5.22(a) shows the bitrate and

backbone over time. At the start, Pendulum uses (2 Mbps, EfficientDet-D6) config;

bitrate peaks every 2 seconds due to periodic high-bitrate frames for profiling (Chap-

ter 5.5.2). After 4s when compute bottleneck occurs, Pendulum reduces the backbone

to D1 and increases the bitrate to 8 Mbps (according to the profiling results). Fig-

ure 5.22(b) shows the throughput and mIoU in the same timeline. Pendulum shortly

suffers from throughput drop when bottleneck occurs, but quickly recovers from it

while retaining the same accuracy by using D6 backbone.
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Figure 5.24: Performance under bandwidth fluctuation.

(a) MOT. (b) BDD.

Figure 5.25: Impact of profiling interval on performance.

5.7.6 System Microbenchmarks

5.8.6.1 Performance Under Bandwidth Fluctuation

Figure 5.24 shows the performance of Reducto and Pendulum under bandwidth fluc-

tuation scenarios (e.g., mobile devices). For real-time throughput, both systems con-

servatively reduce the bitrate to minimum observed bandwidth. While Reducto’s ac-

curacy quickly drops as bottleneck becomes more severe, Pendulum robustly retains

the accuracy by increasing the backbone.

5.8.6.2 Resource-Efficient Tradeoff Profiler

Performance Breakdown. Figure 5.23 shows the performance breakdown of the pro-

filer in terms of profiling overhead (ratio between the total costs for profiling and serv-

ing) and mIoU. We use 5 YOLOv5 backbones (n/s/m/l/x) and 4 bitrates (1, 2, 4, 8

Mbps); a full search over all configs takes 1s. Fixed interval, full search profiling on 2

frames per every 2s window incurs 24.9% overhead. Scene change-based dynamic pro-
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filing reduces the overhead to 8.8%. Finally, leveraging the knob independence (which

reduces the number of searches to 8), reduces the overhead to 1.5% (93.9% smaller

than the fixed-interval, full search) with negligible mIoU drop.

Scene Change Detector Accuracy. Figure 5.25 shows the impact of profiling in-

terval on serving accuracy and overhead across two datasets. The results show that

the interval should change according to the scene change speed. In MOT with static

scenes (Figure 5.25 (a)), triggering the profiling intermittently at every 12s saves 18%

overhead without accuracy drop. However, for BDD with more dynamic scenes (Fig-

ure 5.25 (b)), frequent profiling is necessary (e.g., every 4s). For the two datasets, our

scene change detector accurately triggers profiling at every 9.09s and 2.21s on average,

respectively.

5.8.6.3 Multi-User Joint Resource Scheduler

Figure 5.26 compares the performance of various schedulers. We assume 10 users

with randomly sampled tradeoff curves from MOT and BDD (each with 4-6 Pareto-

optimal configs, bitrate range in [1,10] Mbps and EfficientDet-D0-D6 backbones). We

assume a network bottleneck scenario, where the total bitrate sum should not exceed

20 Mbps. Unit network and compute costs are set as $0.36 and $0.74 (Chapter 5.2.1).

Per-User Optimal chooses user-wise cost-optimal configs independently, resulting in

severe network bottleneck. Compared to the full search optimal solution, our Iter-

ative Max Cost Gradient algorithm achieves comparable performance by exploring

only 0.004% searches. It also reduces the total cost by 25% compared to Pendulum-

Decoupled.
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Figure 5.26: Multi-user scheduling performance.
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Chapter 6

Heimdall: Mobile GPU Coordination Platform for AR

Applications

6.1 Introduction

In this Chapter, we design Heimdall, a mobile GPU coordination platform to support

concurrent multi-DNN and rendering tasks for AR apps. Heimdall newly designs and

implements a Pseudo-Preemptive mobile GPU coordinator to enable highly flexible

coordination among multi-DNN and rendering tasks. Heimdall is distinguished from

prior work in that i) it coordinates latency-sensitive foreground rendering tasks along

with background DNN tasks to achieve stable rendering performance of ≈30 fps, and

ii) it addresses resource contention among multiple DNNs to meet their latency re-

quirements.

Designing Heimdall involves the following challenges:

•Multi-DNN GPU Contention. Compared to prior mobile deep learning frame-

works [14,16,35,36] that have mostly been designed for running a single DNN, emerg-

ing AR apps require concurrent multi-DNN execution (Chapter 2.1.2). Not only are the

individual state-of-the-art DNNs very complex to run in real-time (Chapter 2.2.1), run-

ning multiple DNNs concurrently incurs severe contention over limited mobile GPU
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resources, degrading overall performance. For example, our study shows that running

3 to 4 different DNNs commonly required in AR apps (e.g., object detection, image

segmentation, hand tracking) concurrently on Google TensorFlow-Lite (TF-Lite) [35]

and Xiaomi MACE [36] over high-end Adreno 640 GPU incurs as high as 19.7×

slowdown (Chapter 2.2.4). Although several recent studies aimed at running multi-

ple DNNs concurrently on mobile [3, 12, 54], they have mostly focused on memory

optimization [12,54] or cloud offloading [3]; multi-DNN GPU contention remains un-

solved.

• Rendering-DNN GPU Contention. More importantly, prior works only con-

sider a DNN running in an isolated environment where no other task is contending

over the GPU. When running rendering in parallel with DNNs, GPU contention de-

grades and fluctuates the frame rate, degrading user experience (e.g., drops from 30 to

11.99 fps when 4 DNNs run in background (Chapter 2.2.4)).

There have been studies to schedule concurrent tasks on desktop/server GPUs [57–

59,66,67,69,170,171], either with parallel execution by dividing GPU cores (e.g., us-

ing NVIDIA Hyper-Q [60]) with hardware architectural support, or with time-sharing

through preemption (e.g., using CUDA stream prioritization). However, mobile GPUs

do not provide architectural support for parallel execution, while fine-grained preemp-

tion is not easy as well due to high context switch costs caused by large state size and

limited memory bandwidth (Chapter 6.3.1). Even with architecture evolution, the need

for an app-aware coordinator to dynamically prioritize and allocate resources between

multiple DNNs persists (Chapter 7.2.3). We can also consider cloud offloading, but it

is not trivial to employ it in outdoor scenarios where network latency is unstable.

To tackle the challenges, we design a Pseudo-Preemption mechanism to support

flexible scheduling of concurrent multi-DNN and rendering tasks on mobile GPU.

We take the time-sharing approach as a baseline, and enable context switches only

when a semantic unit of the DNN or rendering task is complete. This does not incur

additional memory access cost, which is the core difficulty in applying conventional
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preemption (triggered by periodic hardware interrupt regardless of the app context)

for mobile GPUs. Accordingly, it allows the multi-DNN and rendering tasks to time-

share the GPU at a fine-grained scale with minimal scheduling overhead. With this

new capability, we flexibly prioritize and run the tasks on the GPU to meet the latency

requirements of the AR app. Our approach can also be useful for the emerging neural

processors (e.g., NPUs or TPUs), as preempting hard-wired matrix multiplications

is complicated and context switch overhead can be more costly due to larger state

sizes (Chapter 7.2.3).

To implement Pseudo-Preemption mechanism, Heimdall incorporates the follow-

ing components:

• Preemption-Enabling DNN Analyzer. The key in realizing Pseudo-Preemption

is breaking down the bulky DNNs into small schedulable units. Our Preemption-

Enabling DNN Analyzer measures the execution times of DNN and rendering tasks

on the target mobile device and partitions the DNNs into the units of scheduling to

enable fine-grained GPU time-sharing with minimal scheduling overhead. We notice

that the execution time of individual DNN operator (op) is sufficiently small (e.g.,

<5 ms for 89.8% of ops). Exploiting this, the analyzer groups several consecutive ops

as a scheduling unit which can fit between the two consecutive rendering events. As

rendering latencies are often very small (e.g., 2.7 ms for rendering a 1080p camera

frame), each task is used as the scheduling unit. Note that existing frameworks run

the entire bulky DNN inference all at once (e.g., Interpreter.Run() in TF-Lite [172],

MaceEngine.Run() in MACE [36]), limiting multi-DNN and rendering tasks to share

the mobile GPU at a very coarse-grained scale.

• Pseudo-Preemptive GPU Coordinator. We design a GPU coordinator that

schedules the DNN and rendering tasks on GPU and CPU. It can employ various

scheduling policies based on multiple factors: profiled latencies, scene variations, and

app/user-specified latency requirements. As the base scheduling policy, the coordinator

assigns the top priority to the rendering tasks and executes them at the target frame rate
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(e.g., 30 fps) to guarantee the usability of the app. Between the rendering events, the

coordinator decides the priority between multiple DNNs and determine which chunk

of DNN ops (grouped by the analyzer) to run on the GPU. It also decides whether to

offload some DNNs to the CPU in case there is a high level of contention on the GPU.

Note that existing frameworks provide no means to prioritize a certain task over others,

making it difficult to guarantee performance under contention.

Our major contributions are summarized as follows:

• To our knowledge, this is the first mobile GPU coordination platform for emerging

AR apps that require concurrent multi-DNN and rendering execution. We believe

our platform can be an important cornerstone to support many emerging AR apps.

• We design a Pseudo-Preemption mechanism to overcome the limitations of mobile

GPUs for supporting concurrency. With the mechanism, Heimdall enhances the

frame rate from ≈12 to ≈30 fps while reducing the worst-case DNN inference

latency by up to ≈15 times compared to the baseline multi-threading method.

• We implement Heimdall on MACE [36], an OpenCL-based mobile deep learning

framework, and conduct an extensive evaluation with 8 state-of-the-art DNNs (see

Table2.2) and various mobile GPUs (i.e., recent Adreno series) to verify the effec-

tiveness.

6.2 Analysis on GPU Contention

The workload of upcoming AR apps is unique in that it runs multiple compute-intensive

DNNs simultaneously while seamlessly rendering the virtual contents. However, exist-

ing mobile deep learning frameworks lack support for multi-DNN and rendering con-

current execution, and severe GPU contention incurs significant performance degrada-

tion for both DNN and rendering tasks.

Algorithm 3 shows the OpenCL-based DNN inference flow in MACE.1 Upon the
1The logic is implemented in SerialNet.Run() function, while TF-Lite is implemented similarly us-

ing OpenGL/OpenCL.
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Algorithm 3 OpenCL-based DNN inference in MACE
1: for Operator in Graph do

2: TargetDevice← Operator.GetTargetDevice() TargetDevice == GPU

3: Kernel← Operator.GetKernel()

4: clCommandQueue.enqueueNDRangeKernel(Kernel) TargetDevice ==

CPU

5: clCommandQueue.finish()

6: Operator.RunOnCPU()

CPU 1

CPU 2

CPU 3

GPU

CPU 
fallback

DNN 1 DNN 2 DNN 3

DNN1 
finished

DNN3 
finished

DNN2 
finished

Time

Figure 6.1: Multi-DNN GPU contention example.

inference start, the framework executes a series of operators (ops) constituting the

DNN. Per each op, the framework first identifies if it is executed on GPU or CPU (lines

1–2). A GPU op is executed by enqueueing its kernel to the command queue to be

executed by the GPU driver (lines 2–4). As enqueueNDRangeKernel() function is

an asynchronous call, consecutive GPU ops are enqueued in short intervals (few µs)

and executed in batches by the driver to enhance GPU utilization. However, when a

CPU op is encountered, it can be executed only after the previously enqueued GPU

ops are finished and the result is available to the CPU via CPU/GPU synchronization

(lines 4–6).

Figure 6.1 illustrates an example 3-DNN GPU contention scenario that can occur

in the above inference process. Each thread on different CPU cores first runs the in-

put preprocessing and enqueues the DNN inference to the GPU. At this step the first

contention occurs; DNN#1 and #3 cannot access the GPU until the already running

DNN#2 is finished. After DNN#2 finishes, DNN#1 takes control over the GPU and
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runs its inference. However, let’s assume that some ops in DNN#1 are not supported

by the GPU backend of the framework and needs to be executed on the CPU (Ta-

ble 2.2 shows how frequently this occurs for different DNNs; more details are in Chap-

ter 6.6.2). In such a case, DNN#1 encounters another contention: even when the CPU

op execution is finished, it cannot access the GPU until the already running DNN#3

finishes. As a result, the inference latency of DNN#1 is significantly delayed.

The above contention becomes more severe with more number of DNNs concur-

rently running. Furthermore, DNNs with more CPU fallback ops suffer more from

contention, as they lose access over the GPU at every CPU op execution. For example,

in Figure 2.3(a), StyleTransfer [22] containing 14 CPU ops suffers the most latency

overhead compared to other DNNs that contain no CPU ops.

6.3 Heimdall System Overview

6.3.1 Approach

The core challenge in supporting concurrency on mobile GPU lies in the lack of sup-

port for parallelization or preemption. As analyzed in Chapter 6.2, mobile GPU can

run only a single task at a given time, making it hard to provide stable performance

when multiple tasks are running. Existing mobile deep learning frameworks, however,

fail to consider such limitations, and are ill-suited for AR workloads in two aspects:

i) they run the entire bulky DNN inference all at once (e.g., by Interpreter.Run() in

TF-Lite, MaceEngine.Run() in MACE), limiting multi-DNN and rendering tasks to

share the GPU at a very coarse-grained scale (Table 2.2), and ii) they provide no means

to prioritize a certain task over others, making it challenging to guarantee performance

under contention.
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6.4.1.1 Why Not Apply Desktop GPU Scheduling?

One possible approach is to implement parallelization or preemption in mobile GPUs.

Although there have been many studies to support multitask scheduling on desktop/server-

grade GPUs [57–59,69,170,171], they are either designed for CUDA-enabled NVIDIA

GPUs (which are unsupported in mobile devices) or require hardware modifications (e.g.,

memory hierarchy [65]), making it difficult to apply for commodity mobile GPUs.

Also, adopting similar ideas is not straightforward due to the following limitations of

mobile GPUs.

Limited Architecture Support. Several studies focused on spatially sharing the GPU

to run multiple kernels in parallel, either by partitioning the computing resources [69,

170] (e.g., starting from Kepler architecture [173] released in 2012, NVIDIA GPUs

can be parallelized in units of Streaming Multiprocessors using Hyper-Q [60]) or fus-

ing parallelizable kernels with compiler techniques [171, 174]. However, such tech-

niques are unsupported in mobile GPUs architecturally at the moment.

Limited Memory Bandwidth. Other studies aimed at time-sharing the GPU by fine-

grained context switching [57–59], as well as enabling high-priority tasks to preempt

the GPU even when others are running [69] (e.g., by using CUDA stream prioritiza-

tion). However, frequent context switching incurs high memory overhead due to large

state size, which is burdensome for mobile GPUs with limited memory bandwidth.

For example, ARM Mali-G76 GPU in Samsung Galaxy S10 (Exynos 9820) has 26.82

GB/s memory bandwidth shared with the CPU, which is 23× smaller than that of

NVIDIA RTX 2080Ti (i.e., 616 GB/s). Each context switch requires 120 MB memory

transfer (=20 cores×24 execution lanes/core×64 registers/lane×32 bits), which incurs

at least 4.36 ms latency even when assuming the GPU fully utilizes the shared memory

bandwidth. While recent Qualcomm GPUs (Adreno 630 and above) support preemp-

tion [175] (which can be utilized by setting different context priorities in OpenCL), we

observed that each context switch (both between rendering–DNN and DNN–DNN) in-
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curs 2–3 ms overhead on LG V50 with Adreno 640 GPU, aside from the fact that the

priority scheduling is possible only at a coarse-grained scale (i.e., low, medium, and

high). Such memory overhead would be burdensome in the multi-DNN and rendering

AR workload, where context switch should occur at a 30 fps (or higher) scale.

6.4.1.2 Our Approach: Pseudo-Preemption

To tackle the challenges, we design a Pseudo-Preemption mechanism to coordinate

multi-DNN and rendering tasks. As parallelization is unsupported in mobile GPUs,

we take the time-sharing approach as a baseline. To mimic the effect of preemption

while avoiding the burdensome context switch memory overhead, we divide the DNN

and rendering tasks into smaller chunks (i.e., scheduling units) and switch between

them only when each task chunk is finished, enabling multi-DNN and rendering tasks

to time-share the GPU at a fine-grained scale. A possible downside of our approach

is that fragmenting the GPU tasks may incur latency overhead, as the GPU driver

would lose the chance to batch more tasks to enhance GPU utilization. However, such

overhead can be minimized as we can flexibly adjust the scheduling unit size to balance

time-sharing granularity and latency overhead (e.g., 89.8% of the DNN ops run within

5 ms, and rendering latencies are typically small).

6.3.2 Design Considerations

Commodity Mobile Device Support. Our goal is to support a wide range of commod-

ity mobile devices by requiring no modification to existing hardware or GPU drivers.

We focus on using mobile GPU and CPU in this work, and plan to add NPU/TPU sup-

port when the hardware and APIs are more widely supported. We also leave cloud/edge

offloading out of our scope, as it introduces latency issues in outdoor mobile scenarios.

Guarantee Stable Rendering Performance. Our main goal is to enable seamless

rendering even in the presence of multi-DNN execution. We aim to minimize the frame

rate drop and fluctuation due to GPU contention, which harms the user experience.
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Figure 6.2: System Architecture of Heimdall.

Coordinate Multi-DNN Execution. While guaranteeing seamless rendering, we aim

to coordinate multiple DNNs to satisfy the app requirements with minimal inference

latency overhead.

No Loss of Model Accuracy. Our goal is to incur no accuracy loss for each DNN

inference. We leave runtime model adaptation for latency-accuracy tradeoff (e.g., via

pruning [54]) to future work.

Transparency. Finally, we aim to design a system that minimizes the extra efforts

required for the app developers to use our platform.

6.3.3 System Architecture

Figure 6.2 depicts the overall architecture of Heimdall. Given the app profile (ren-

dering frame rate and resolution, DNNs to run and latency constraints), Preemption-

Enabling DNN Analyzer first profiles the information necessary to determine the schedul-

ing units to enable the Pseudo-Preemption mechanism. First, it profiles the rendering

and DNN inference latencies on the target AR device to determine how much time the

DNNs can occupy the GPU between the rendering events (Chapter 6.4.2). Second, it

partitions the DNNs into chunks (scheduling unit) that can fit between the rendering

events with minimal inference latency overhead (Chapter 6.4.3).
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At runtime, Pseudo-Preemptive GPU Coordinator takes multi-DNN and rendering

tasks from the main thread (that controls the camera, UI, and display), and coordinates

their execution to satisfy the app requirements. Specifically, it first defines a utility

function to compare which DNN is more important to run at a given time based on the

inference latency and scene contents (Chapter 6.5.2), and coordinates their execution

on GPU, as well as dynamically offload some DNNs to the CPU to reduce the GPU

contention (Chapter 6.5.3).

6.4 Preemption-Enabling DNN Analyzer

6.4.1 Overview

What Should We Analyze? The goals of the analyzer are i) profile rendering and

DNN inference latencies on the target device (which varies depending on the mobile

SoC and GPU) to let the coordinator get a grasp on how it can dynamically schedule

their execution, and ii) partition the bulky DNNs into chunks (i.e., the units of schedul-

ing), to enable fine-grained GPU coordination and guarantee rendering performance.

Static Profiling vs. Dynamic Profiling? The app requires to run multi-DNN, render-

ing, and other tasks (e.g., pre/postprocessing for the DNN inference, camera) simul-

taneously, which may fluctuate the execution times of each task at runtime. However,

as mobile GPUs do not support preemption (i.e., a task cannot be interrupted once

started), the execution times on GPU remain stable regardless of the presence of other

tasks. Thus, offline profiling and DNN partitioning approach is feasible for GPU. How-

ever, the execution times of DNNs on CPUs may fluctuate due to resource contention;

Figure 6.5 shows that the inference times on CPU increase and fluctuate when the

camera is running in background. Thus, CPU execution times need to be continuously

tracked at runtime.

How Fine Should We Partition the DNNs? Inference times of DNNs typically ex-

ceed multiple rendering intervals as shown in Table 2.2. At the op-level, however, the
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varying partition sizes.

execution times remain small enough, making fine-grained partitioning feasible to fit

in between the rendering events. For example, for the 7 DNNs in Table 2.2 whose in-

ference latencies are over 33 ms, Figure 6.3 shows that on average 89.8% of the ops

run within 5 ms on Google Pixel 3 XL. Therefore, it suffices to partition the DNNs at

the op-level and not below (e.g., convolution filter-level). However, note that dividing

the DNN too finely also has its downside: it incurs higher latency overhead as the GPU

driver loses the chance to batch more consecutive ops to enhance GPU utilization.

6.4.2 Latency Profiling

Rendering Latency. Given the target rendering frame rate (f ) and resolution, the ana-

lyzer first measures the rendering latency, Trender. This determines how much time the

DNNs can occupy the GPU between rendering events (i.e., 1
f −Trender). For example,

rendering 1080p frames on Adreno 640 GPU in LG V50 takes 2.7 ms (Figure 6.4),

leaving 30.6 ms for DNNs when the frame rate is 30 fps.
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DNN Latency. Secondly, the analyzer measures the DNN inference latencies on the

target GPU and CPU. Figure 6.7 shows an example of the profiled results on different

processors (i.e., the GPU and CPU cores in the ARM big.LITTLE architecture) in LG

V50.2 The analyzer also measures the inference latencies of DNNs running on CPU at

runtime to track variations due to CPU resource contention.

6.4.3 DNN Partitioning

Basic Operation. Figure 6.8 shows the operation of DNN partitioning. Given a DNN

D composed of N ops, let T (Di,j) denote the execution time of a subgraph from i-th

to j-th op. Our goal is to determine a set of K indices {p1 = 1, p2, p3, ..., pK = N}

that partition the DNN in a way such that each partition execution time lies within the

rendering interval,

T (Dpi,pi+1
) ≤ 1

f
− Trender 1 ≤ i ≤ K − 1. (6.1)

Although there are multiple solutions that satisfy the constraints, dividing the model

too finely (e.g., running only one or two ops at a time) incurs higher scheduling over-

head, as the GPU driver loses the chance to batch more consecutive ops to enhance

GPU utilization: Figure 6.6 shows that executing only a single op at a time incurs

13 to 70% latency overhead compared to running the entire model at once. Thus, the
2We currently assume that each DNN uses only a single CPU core, and leave multi-core CPU execu-

tion to future work.
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analyzer minimizes K by grouping as many consecutive ops as possible without ex-

ceeding the rendering interval. This is done as follows: i) starting from the first op of

the model, incrementally increase the op index i until the latency of executing op 1 to

i exceeds the rendering interval, ii) group op 1 to i − 1 as the first partition, and iii)

start from op i and repeat the process until reaching the final op.

Relaxation. The main drawback of our approach is that undesirable GPU idle time

occurs when a partition execution time is shorter than the rendering interval (especially

at the end of the model where there are not enough ops left). To alleviate the issue, we

relax the constraint in Equation (6.1) and allow the partition execution time to exceed

the rendering interval by a small margin (e.g., 5 ms), so that more ops can be packed

to maximize GPU utilization.

6.5 Pseudo-Preemptive GPU Coordinator

6.5.1 Overview

Where Does the Coordinator Operate? The coordinator should take into account

the rendering and DNN requirements of the app, and coordinate their execution (in the

units of scheduling determined by the analyzer) considering the task priorities. With

this requirement, we embed the coordinator in app-level deep learning framework,

rather than the OS or the device driver layer where the workloads are highly abstracted.

Operational Flow. The coordinator assigns the top priority to the rendering task and

executes it at the target frame rate. We take this design decision as degradation or

fluctuation in the rendering frame rate immediately affects the usability of AR apps. It

is possible to change the scheduling policy to make rendering and DNN tasks to have

the same priority in case rendering is less important.

The coordinator takes in the DNN inference requests from the main thread via

admission control, so that the inference of a DNN is enqueued only after its previous

inference has finished. When a DNN inference is enqueued, the latest camera frame is
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fed as input after either resizing it to the model input size or cropping the sub-region

depending on the task. The scheduling event is triggered after every rendering event to

decide the priority between DNNs and determine which DNN chunk (partitioned by

the analyzer) to run on the GPU until the next rendering event. To achieve the goal,

we define a utility function that characterizes the priority of a DNN and formulate

a scheduling problem that enables fine-grained GPU time-sharing between multiple

DNNs to satisfy the app requirements. It also decides whether to offload some DNNs

to the CPU in case the GPU contention level is too high.

6.5.2 Utility Function

To schedule multiple DNNs, we need a formal way to compare which DNN is more

important to run at a given time. For this purpose, we define a utility function for each

DNN. The utility of a DNN Di whose k-th inference is enqueued by the main thread

at tistart,k is modeled as a weighted sum of the two terms,

UDi(t) = LDi(t, t
i
start,k) + α · CDi(t

i
start,k, t

i
start,k−1), (6.2)

where L(t, tstart) is the latency utility that measures the freshness of the inference,

CDi(t
i
start,k, t

i
start,k−1) is the content variation utility that captures how rapidly the

scene content has changed from the last DNN inference, and α is the scaling factor

(empirically set as 0.01 in our current implementation).

6.6.2.1 Latency Utility

The latency utility of the DNN Di is calculated as,

LDi
(t, tistart,k) = L0

Di
−
(
βi · (t− tistart,k)γi

)2
. (6.3)

The latency utility is modeled as a concave function so that it decreases more rapidly

over time to prevent the coordinator from delaying the execution too long. Three pa-

rameters can be configured to set the priorities between DNNs. βi controls the propor-

tion of the GPU time each DNN can occupy (e.g., setting βi to 1 for all DNNs will

enable equal sharing). L0
Di

and γi controls the priority among DNNs; a DNN with
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higher L0
Di

and γi will have higher initial utility but decrease more rapidly, so that the

coordinator can allow it to preempt the GPU more frequently before its utility drops.

6.6.2.2 Content Variation Utility

The content variation utilityDi is computed as the difference between the input frames

of the consecutive inferences at tistart,k and tistart,k−1. Normally, this can be done by

calculating the structural similarity (SSIM) [176] between the two frames. However,

this is infeasible in mobile devices due to high computational complexity. Alterna-

tively, we take the approach in [177] and compute the difference between the Y values

(luminance) Y k of the two frames (which has a high correlation with the SSIM and

requires only O(N) computations),

CDi
(tistart,k, t

i
start,k−1) =

H∑
h=1

W∑
w=1

|Y k
h,w − Y k−1

h,w |, (6.4)

where H,W is the height and width of the frame.

6.5.3 Scheduling Problem and Policy

Given the DNNs and their utilities, the coordinator schedules their execution to max-

imize the overall performance (defined as a policy). Specifically, the coordinator op-

erates in a two-step manner: i) schedule DNNs to efficiently share the GPU, and ii)

determine whether to offload some DNNs to the CPU to resolve contention.

6.6.3.1 GPU Coordination Policy

Among many possible policies, we define two common GPU coordination policies,

following a similar approach in [54]. Assume that N DNNs D1, ..., DN are running

on GPU, with latency constraints t1,max, ..., tM,max (which are set appropriately de-

pending on the app scenario). The two policies are formulated as follows.

MaxMinUtility policy tries to maximize the utility of a DNN that is currently experi-

encing the lowest utility. This is done by solving,
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min
i
UDi

(t) .

s.t. tiend,k − tistart,k ≤ ti,max

(6.5)

Under the MaxMinUtility policy, the coordinator tries to fairly allocate GPU resources

to balance performance across multiple DNNs. We expect this policy to be useful in

AR apps mostly consisted of continuously executed DNNs that need to share the GPU

fairly (e.g., augmented interactive workspace scenario in Table 2.1).

MaxTotalUtility policy tries to maximize the overall sum of utilities of the DNNs.

This is done by solving,

max
i

∑N
t=1 UDi(t).

s.t. tiend,k − tistart,k ≤ ti,max

(6.6)

Under the MaxTotalUtility policy, the coordinator favors a DNN with higher utility

(i.e., allow it to preempt the GPU more frequently) and runs the remaining DNNs at

the minimum without violating their deadline. This policy will be useful in case an

AR app requires to run high-priority event-driven DNNs at low response time (e.g.,

immersive online shopping scenario in Table 2.1).

6.6.3.2 Opportunistic CPU Offloading

As the app runs more DNNs in parallel, the computational complexity may exceed the

mobile GPU capabilities. In such a case, GPU contention would degrade the overall

utilities of the DNNs, possibly making it impossible to satisfy the app requirements.

The coordinator periodically determines if some DNNs should be offloaded to the CPU

to reduce the GPU contention level.

Let P1, P2, ..., PN denote the processor (GPU or CPU) the N DNNs are running

on. The processor mapping is determined by solving the following problem,

max
P1,P2,...,PN

∑N
t=1 UDi,Pi

(t), (6.7)
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where UDi,Pi(t) denotes the utility of Di running on processor Pi (affected by the in-

ference time on Pi, which is profiled by the analyzer). As changing the target processor

(i.e., allocating memory for the model weights and feature maps) incurs around 50 ms

latency in MACE, we reconfigure the mapping at every 1-second interval.

6.5.4 Greedy Scheduling Algorithm

Solving the above scheduling problem is computationally difficult, as well as infeasible

to plan offline (as the solution varies depending on scene contents). Thus, we solve it

in a greedy manner to obtain an approximate solution.

GPU Coordination. For each scheduling event, the coordinator first checks how many

partitions are left to execute for each DNN. Based on the profiled latencies of the re-

maining partitions, the coordinator checks if the inference can finish within the time

left before its deadline; in case a DNN is not expected to finish within the deadline,

the coordinator runs it immediately. If otherwise, the coordinator determines which

DNN to execute based on their current utility values. Specifically, the MaxMinUtil-

ity policy selects a DNN with the current lowest utility. The MaxTotalUtility policy

iteratively computes the expected sum of utilities at the current scheduling event as-

suming that a specific DNN chunk is executed, and selects the chunk which maximizes

the sum (without consideration of the future). Specifically, the utility sum is estimated

by adding the latency delay equal to the scheduling interval to the latency utility of

the DNNs that are not chosen, so as to reflect the additional latency delay due to the

execution of another DNN.

CPU Offloading. Among the DNNs running on GPU, the coordinator picks the DNN

experiencing the highest latency and offloads it to CPU if the profiled CPU inference

time is (1+m)× smaller than the current latency on GPU (m is a positive margin to

avoid ping-pong effect between CPU and GPU); per each scheduling event, only one

DNN is offloaded to the CPU. If no DNN is offloaded, the coordinator also checks

whether it should bring a DNN on CPU back to GPU. Similarly, a DNN is reloaded
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to GPU if its inference time on CPU is (1+m)× larger than its last inference time on

GPU.

6.6 Additional Optimizations

The end-to-end inference pipeline for every DNN involves several steps that need to

be executed on the CPU: i) preprocessing the input image before the inference, ii)

postprocessing the inference output to an adequate form, and iii) ops in the model

that are unsupported by the GPU backend of the mobile deep learning framework and

needed to be executed on CPU. Granting GPU access to a DNN that currently needs

to run such steps incurs unwanted GPU idle time, slowing down the overall inference

latency. This becomes especially significant when processing high-resolution complex

scene images. For example, RetinaFace [17] detector with inference pipeline shown

in Figure 6.9 spends 106 out of 287 ms total inference time on CPU to process a

1080p image with 20 faces. To enhance GPU utilization, we parallelize the following

components.

6.6.1 Preprocessing and postprocessing

Before enqueueing a DNN inference to the task queue for the Pseudo-Preemptive GPU

Coordinator to schedule, we run the following steps in parallel with other DNN infer-

ence running on the GPU), so that the DNN can fully occupy the GPU when given the

access from the coordinator.

Preprocessing. The preprocessing steps involve resizing the input frame (RGB byte

array) to the DNN’s input size, converting it to float array, and scaling the pixel values

(e.g., from [0,255] to [-1,1]).

Postprocessing. The postprocessing steps involve converting the inference output to

task-specific forms. For example, face detection requires converting the output fea-

ture map to bounding boxes and performing non-maximum suppression to filter out
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Figure 6.9: End-to-end DNN inference pipeline example for RetinaFace detector.

redundant ones.

6.6.2 CPU Fallback Operators

GPU backend of a mobile deep learning framework typically supports only a limited

number of ops (i.e., a subset of the ops supported in the cloud framework). In case

an op is unsupported by the GPU backend, it falls back to CPU for execution. We

identify the CPU fallback op indexes of a DNN at the profiling stage and run them

in parallel with other DNNs at runtime. Note that CPU fallback occurs frequently,

especially for complex state-of-the-art DNNs. For example, TF-Lite does not support

tf.image.resize() required in feature pyramid network [28], which most state-of-the-

art object detectors rely on for detecting small objects. Similarly, MACE does not

support common ops such as tf.crop(), tf.stack().

6.7 Implementation

We implement Heimdall by extending MACE [36], an OpenCL-based mobile deep

learning framework, to partially run a subset of the ops in the DNN at a time by modify-

ing MaceEngine.Run() (and underlying functions) to MaceEngine.RunPartial(startIdx,

endIdx). We use OpenCV Android SDK 3.4.3 for camera and image processing. We

evaluate Heimdall on two commodity smartphones: LG V50 (Qualcomm Snapdragon

855 SoC, Adreno 640 GPU) running on Android 10.0.0 and 9.0.0, and Google Pixel 3

XL (Snapdragon 845 SoC, Adreno 630 GPU) running on Android 9.0.0. We also used
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two different vendor-provided OpenCL libraries obtained from LG V50 and Google

Pixel 2 ROMs. We achieved consistent results across different settings, and report the

best results on LG V50.

We choose the DNNs with sufficient model accuracy for the evaluation, imple-

ment and port them on MACE (the list is summarized in Table 2.2). We implement

RetinaFace [17], ArcFace [18], EAST [13], PoseNet [21] using TensorFlow 1.12.0.

For MobileNet-v1 [25], CPM [24], and StyleTransfer [22], we use the models pro-

vided in the MACE model zoo [178]. For DeepLab-v3 [19] and YOLO-v2 [20], we

use the pre-trained models from the original authors.

6.8 Evaluation

6.8.1 Experiment Setup

Scenarios. We evaluate Heimdall for 3 scenarios in Table 2.1 with the DNNs in Ta-

ble 2.2: immersive online shopping, augmented interactive workspace, and AR emoji.

Evaluation Metrics.

• Rendering Frame Rate: the number of frames rendered on the screen, measured

every 1/3 seconds.

• Inference Latency: the time interval between when the DNN inference is enqueued

to the coordinator (after preprocessing), and when the last op of the model is executed.

While we omitted pre/postprocessing latency to evaluate only the GPU contention

coordination performance, end-to-end latency can also be enhanced as we parallelize

such steps as well (Chapter 6.6).

Comparison Schemes.

• Baseline MACE creates multiple MaceEngine instances (one per each DNN) in

separate threads and runs multi-DNN and rendering tasks in parallel without any co-

ordination.

•Model-Agnostic DNN Partitioning executes 5 ops of a DNN at a time (regardless
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Figure 6.10: Performance overview of Heimdall on LG V50.

of the model or rendering requirements). This is supported in MACE to enhance UI re-

sponsiveness by preventing DNNs from occupying the GPU for too long, implemented

by invoking cl::Event.wait() after 5 clEnqueueNDRangeKernel() calls.

6.8.2 Performance Overview

We first evaluate Heimdall with the MaxTotalUtility policy on immersive online shop-

ping scenario compared with alternatives. The app requirements are set to render

frames at 30 fps, run segmentation (DeepLab-v3) and hand tracking (PoseNet) at 1

and 2 fps, respectively. Image style transfer (StyleTransfer) is set to have higher prior-

ity than others to satisfy the low response time requirement.

Figure 6.10(a) shows the rendering performance, where the error bar denotes the

minimum and maximum frame rates. Heimdall supports a stable 29.96 fps rendering

performance, whereas the baseline suffers from low and fluctuating frame rate (6.82-

17.70 fps, 11.99 on average). While the model-agnostic partitioning slightly enhances

the frame rate, it still suffers from fluctuation due to the uncoordinated execution of

DNNs and rendering.

Figure 6.10(b) shows the DNN latency results, where the error bar denotes the min-

imum and maximum inference latencies. Overall, Heimdall efficiently coordinates the

DNNs to satisfy the app requirements: StyleTransfer, PoseNet, and DeepLab-v3 run at

109, 409, 919 ms on average, respectively (maximum 139, 548, 1064 ms), while the

worst-case inference latency of StyleTransfer is also reduced by 14.92× (from 2074 to

139 ms). This is achieved by i) giving preemptive access to StyleTransfer, ii) running

DeepLab-v3 at the minimum and PoseNet more frequently to satisfy the latency con-
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Figure 6.11: DNN partitioning overhead.

straints of both tasks, and iii) offloading YOLO-v2 to CPU to reduce GPU contention

level (which also benefits YOLO-v2). Baseline and model-agnostic partitioning that

cannot support such coordination fail to satisfy the app requirements, especially for

StyleTransfer which is more vulnerable to GPU contention due to several CPU fall-

back ops as analyzed in Chapter 6.2.

6.8.3 DNN Partitioning/Coordination Overhead

Next, we evaluate the DNN partitioning and coordination overhead on inference la-

tency when executed with 1080p camera frame rendering at 30 fps. Figure 6.11 shows

that the total GPU latency of the partitioned DNN chunks remain almost identical to

unpartitioned inference latency, as Preemption-Enabling DNN Analyzer tries to pack

as many ops as possible. The remaining overhead other than the rendering latency in-

cludes multiple factors, including the GPU idle time due to DNN chunks that do not

perfectly fit into the rendering interval, scheduling algorithm solver, and logging pro-

cess for the evaluation (this is negligible on runtime). Most importantly, our current

implementation is limited to coordinating multiple DNN inferences on CPU (due to

fallback or offloading) on different cores; other tasks (e.g., camera, pre/postprocessing

steps) may interfere and cause latency overhead. We plan to handle the issue in our

future work for further optimization.
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(a) MaxMinUtility.

(b) MaxTotalUtility.

Figure 6.12: Performance comparison of GPU coordination policies.

6.8.4 Pseudo-Preemptive GPU Coordinator

GPU Coordination Policy. Figure 6.12 shows how the 3 DNNs in the immersive on-

line shopping scenario are coordinated (i.e., utility over time and GPU occupancy) on

the GPU under two policies in Chapter 6.5.3. Figure 6.12(a) shows that the MaxMinU-

tility policy executes a DNN with the currently lowest utility and enables a fair re-

source allocation between the 3 DNNs. Figure 6.12(b) shows that MaxTotalUtility

policy favors PoseNet which has higher priority than others (i.e., higher L0
Di

and γi

in Equation (6.3), meaning that the utility is higher when the inference is enqueued

but decays rapidly over time) to maximize the total utility. As a result, the utility of

PoseNet remains higher than that under the MaxMinUtility policy.

Opportunistic CPU Offloading. Next, we incorporate the opportunistic CPU offload-

ing in the same setting as in Figure 6.12(a). Figure 6.13 shows the GPU/CPU occu-

pancy and utility over time for the 3 DNNs. When CPU offloading is triggered at

around t=1600 ms, YOLO-v2 (which had the least priority and thus had been exe-
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Figure 6.13: Opportunistic CPU offloading performance.

cuted sporadically) is offloaded to CPU. This benefits the other two DNNs on GPU

as the contention level decreases (notice that the utility of PoseNet becomes higher

after CPU offloading), while YOLO-v2 also benefits as it experiences faster inference

latency as compared to when it was contending with the other two DNNs on GPU.

6.8.5 Performance for Various App Scenarios

Figure 6.14 shows the performance of Heimdall on two different scenarios: aug-

mented interactive workspace and AR emoji. Overall, we observe consistent results.

Figure 6.14(a) shows that Heimdall enables higher and stable rendering frame rate.

Figure 6.14(b) shows that for the interactive workspace scenario, Heimdall coordi-

nates the two DNNs by offloading the text detection (EAST) to the CPU so that the

hand tracking (PoseNet) can run more frequently on the GPU. However, the latency

gain is not as high as expected due to the scheduling overhead caused by multiple

concurrent CPU tasks. Finally, Figure 6.14(c) shows that for the AR emoji scenario,

Heimdall prioritizes StyleTransfer to guarantee low inference latency, while balancing

the latencies between RetinaFace and DeepLab-v3.
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Figure 6.14: Performance of Heimdall for other AR app scenarios.

Table 6.1: Face detection and person segmentation accuracy (IoU) for the AR emoji

scenario.

Baseline Model-agnostic Heimdall

Bounding box Mask Bounding box Mask Bounding box Mask

0.52±0.12 0.93±0.02 0.57±0.12 0.92±0.02 0.63±0.11 0.90±0.03

6.8.6 DNN Accuracy

We evaluate the impact of Heimdall on DNN accuracy for the AR emoji scenario.

For repeatable evaluation, we sample 5 videos of a single talking person from the

300-VW dataset [179]. As the dataset does not provide the face bounding box and per-

son segmentation mask labels, we run our DNNs on every frame and use the results

as ground truth to be compared with the runtime detection results. Table 6.1 shows

the detection accuracy in terms of mean Intersection over Union (IoU). For baseline

multi-threading, face detection accuracy remains low, as RetinaFace (with several CPU

fallback ops) runs at only≈1 fps due to contention with DeepLab-v3 (Figure 6.14(c)).
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While model-agnostic partitioning alleviates the issue, it cannot coordinate the two

DNNs. With Heimdall, we can flexibly run RetinaFace more frequently (≈3 fps) to

improve the face detection accuracy at the cost of relatively smaller loss in the segmen-

tation accuracy. Note that the performance gain came from utilizing the app-specific

content characteristics (i.e., the face moves more rapidly than the body). For other app

scenarios, we can similarly take into account the target scene content characteristics to

coordinate multiple DNNs and improve the overall accuracy.

6.8.7 Energy Consumption Overhead

Finally, we report the impact of Heimdall on energy consumption. We use Qualcomm

Snapdragon Profiler [180] to measure the system-level energy consumption. For all the

three evaluated app scenarios, baseline multi-threading consumes 4.8–5.1 W, mostly

coming from the ≈100% GPU utilization which is known to be the dominant source

of mobile SoC energy consumption [181] (capturing 1080p camera frames and ren-

dering them on screen without any DNN running consumes 1.9–2.3 W). Similarly, the

GPU utilization in Heimdall remains ≈100% and consumes 5.1-5.2 W. The slight in-

crease in the energy consumption comes from the additional CPU tasks coming from

the increased frame rate and the scheduling overhead of the Pseudo-Preemptive GPU

coordinator.
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Chapter 7

Conclusion

7.1 Summary

In this dissertation, we depicted emerging live video analytics app scenarios and char-

acterized their workload. We then analyzed the technical challenges in realizing them,

and introduced our research vision and systems to develop an end-to-end edge-cloud

cooperative platform to support the workload.

We first designed EagleEye, a wearable camera-based system to identify missing

person(s) in large, crowded urban spaces in real-time. To further innovate the perfor-

mance of the state-of-the-art face identification techniques on LR face recognition,

we designed a novel ICN and a training methodology that utilize the probes of the

target to recover missing facial details in the LR faces for accurate recognition. We

also develop Content-Adaptive Parallel Execution to run the complex multi-DNN face

identification pipeline at low latency using heterogeneous processors on mobile and

cloud. Our results show that ICN significantly enhances LR face recognition accuracy

(true positive by 78% with only 14% false positive), and EagleEye accelerates the

latency by 9.07× with only 108 KBytes of data offloaded to the cloud.

We next designed Pendulum, an end-to-end live video analytics system with network-

compute joint scheduling. To overcome the limitations of single-stage scheduling sys-
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tems in alternating resource bottleneck scenarios, we newly discover the tradeoff rela-

tionship between the video bitrate and DNN complexity. Leveraging this, we design an

end-to-end system composed of (i) an efficient and scalable knob control mechanism,

(ii) a lightweight tradeoff profiler, and (iii) a multi-user joint resource scheduler. Ex-

tensive evaluation shows that Pendulum achieves up to 0.64 mIoU gain (from 0.17 to

0.81) and 1.29× higher throughput compared to state-of-the-art single-stage schedul-

ing systems.

Finally, we designed Heimdall, a mobile GPU coordination platform for emerg-

ing AR apps. To coordinate multi-DNN and rendering tasks, the Preemption-Enabling

DNN Analyzer partitions the DNN into smaller units to enable fine-grained GPU

time-sharing with minimal DNN inference latency overhead. Furthermore, the Pseudo-

Preemptive GPU Coordinator flexibly prioritizes and schedules the multi-DNN and

rendering tasks on GPU and CPU to satisfy the app requirements. Heimdall efficiently

supports multiple AR app scenarios, enhancing the frame rate from 11.99 to 29.96 fps

while reducing the worst-case DNN inference latency by up to ≈15 times compared

to the baseline multi-threading approach.

7.2 Discussion

7.2.1 Extension to Other Workloads

The workload of many future multi-DNN-enabled live video analytics applications is

similar to EagleEye in that they require running a series of complex DNNs repeti-

tively to detect objects in a high-resolution scene image and analyze each identified

instance (e.g., text identification, pedestrian identification, etc.). For such applications,

our Content-Adaptive Parallel Execution can be generally adapted to enhance perfor-

mance by applying different pipeline depending on the content and parallelizing the

execution over heterogeneous processors on mobile and cloud.
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7.2.2 Robustness to Wider Network and System Environments

Knob Choices Under Other System Goals. We choose the knobs mainly to maximize

control independency and minimize knob preparation overhead; other knob choices

can also be feasible under different goals. For example, to minimize GPU memory

overhead for edge device deployment, quantization can be considered with some model

preparation efforts. When handling a wide range of network bandwidths including ex-

treme bottleneck (e.g., < 1 Mbps for LPWAN-based disaster monitoring [182]), en-

hancement can be an adequate knob.

Joint Scheduling in Edge-Cloud Collaborative Inference Systems. Joint scheduling

can be extended to a collaborative inference context, i.e., across (i) on-device, (ii)

network, and (iii) cloud stages. For example, in case of a compute bottleneck, the

mobile device can partially run the DNN inference workload and offload the remaining

to the cloud (e.g., partial RoIs [3,97] or DNN intermediate features [10,98,99]), which

can be jointly scheduled at the network and the cloud stages.

7.2.3 Impact of Hardware Evolution

7.2.1.1 Mobile GPU Evolution

Even when mobile GPUs evolve similar to desktop GPUs, the need for an app-aware

coordination platform to dynamically schedule multiple tasks to satisfy the AR app

requirements will persist.

Parallelization. With the architecture support, we can consider porting desktop GPU

computing platforms (e.g., recent CUDA for ARM server platforms [183]) and spa-

tially partitioning the GPU to run multi-DNN and rendering tasks concurrently. How-

ever, due to a limited number of computing cores and power of mobile GPUs (e.g.,

RTX 2080Ti: 13.45 TFLOPs vs. Adreno 640: 954 GFLOPs), static partitioning would

be limited in running multiple compute-intensive DNNs. Instead, a coordinator should

dynamically allocate resources at runtime; when an inference request for a heavy DNN
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with high priority is enqueued, the coordinator should allocate more number of parti-

tioned resources dynamically to minimize response time.

Preemption. With fine-grained, near-zero overhead preemption support (e.g., NVIDIA

Pascal GPUs [184] support instruction-level preemption at 0.1 ms scale [185]), we can

consider employing prior multi-DNN scheduling for desktop GPUs [67,69]. However,

prior works mostly assume that the task priorities are fixed in advance, whereas in AR

apps they can be dynamic depending on the scene contents (e.g., in the surroundings

monitoring scenario, face detection would need to run more frequently than object de-

tection in case there are many people). Therefore, a coordinator would be needed to

dynamically adjust priorities at runtime for app usability.

7.2.2.2 Emergence of NPUs/TPUs

Recently, neural processors are being embedded in mobile devices (e.g., Google Pixel

4 edge TPU [186], Huawei Kirin NPU [187]). Such processors maximize computing

power by packing a large number of cores specialized for DNN inference. For example,

Google TPUs employ 128×128 systolic array-based matrix units (MXUs), which ac-

celerate matrix multiplication by hard-wired calculation without memory access. We

envision that our Pseudo-Preemption mechanism can also be useful in coordinating

multiple tasks on such neural processors, as i) it is challenging to preempt the hard-

wired MXUs, and ii) context switch overhead on bandwidth-limited mobile SoCs can

be more costly due to larger state sizes than GPUs.

7.3 Future Works

7.3.1 Joint Scheduling Extension to App-RAN Cross-Layer Control

Pendulum currently takes the network-as-a-black-box approach (i.e., app-level band-

width estimation and bitrate control). We plan to extend joint scheduling to app-RAN

(Radio Access Network) cross layer control. Specifically, we expect the following
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scheduling gains if the platform operator has control over both the RAN (e.g., private

5G [147, 148]) and the cloud server. i) Better Scheduling Accuracy and Cost Reduc-

tion. The RAN can provide a more accurate estimate of the network bandwidth to the

cloud server based on the monitored channel status at the physical layer (e.g., uplink

SINR) [188]. The RAN can also dynamically allocate bandwidth (Resource Blocks,

RBs) across users considering their video content and network-compute tradeoffs (e.g.,

higher bandwidth to users with more dynamic scenes) to reduce overall cost. For ex-

ample, our preliminary experiment with real-world video traces from BDD and MOT

datasets shows that app-aware RB scheduling reduces the overall compute cost by up

to 52% compared to app-agnostic equal RB scheduling. ii) Per-Frame Latency Guar-

antee. By jointly scheduling the RB transmission order as well as the GPU inference

order, we can improve per-frame latency predictability and latency SLO satisfaction

ratio. For example, in case a user’s frame transmission is unexpectedly delayed due to

SINR fluctuation, we can prioritize his DNN inference at the cloud server to compen-

sate for the delay and meet the latency deadline. We plan to integrate such cross-layer

control in our future work.

7.3.2 System Support for 3D Point Cloud Videos

Our current platform is mostly designed for high-resolution RGB videos. We plan to

extend our platform support for more sensor modalities (e.g., RGB-D, LiDAR) for

diverse live video analytics applications. As an initial attempt, we are designing an

end-to-end live video analytics platform for 3D point cloud videos. 3D point cloud

analysis add a new dimension of depth perception, which is crucial for various live

video analytics apps (e.g., autonomous driving, indoor robot navigation). Especially,

processing the 3D point cloud yields higher accuracy than 2D projection with lower

number of FLOPs (e.g., 5% higher accuracy with 7× small MACs [189]). However,

streaming and analyzing 3D point cloud is challenging due to its large data size. For

example, our preliminary study shows that the end-to-end Octree-based streaming and
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3D object detection pipeline takes ≈800 ms for 110 K points LiDAR frame. Fast and

efficient 3D point cloud is also non-trivial, mainly due to its high data sparsity. Despite

the challenges, we identified a key opportunity for optimization: objects only compose

≈10% for typical 3D point cloud frames. We are currently developing a system that

efficiently selects among multiple sampling features (e.g., edge filtering, resolution

scaling, temporal tracking) to efficiently sample high-saliency points (and thus the

streaming and analysis latency) from the input point cloud without accuracy drop.
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