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Abstract—We present Supremo, a cloud-assisted system for low-latency image super-resolution (SR) in mobile devices. As SR is

extremely compute-intensive, we first further optimize state-of-the-art DNN to reduce the inference latency. Furthermore, we design a

mobile-cloud cooperative execution pipeline composed of specialized data compression algorithms to minimize end-to-end latency with

minimal image quality degradation. Finally, we extend Supremo to video applications by formulating a dynamic optimal control

algorithm to design Supremo-Opt, which aims to maximize the impact of SR while satisfying latency and resource constraints under

practical network conditions. Supremo upscales 360p image to 1080p in 122 ms, which is 43.68� faster than on-device GPU

execution. Compared to cloud offloading-based solutions, Supremo reduces wireless network bandwidth consumption and end-to-end

latency by 15.23� and 4.85� compared to baseline approach of sending and receiving whole images, and achieves 2.39 dB higher

PSNR compared to using conventional JPEG to achieve similar data size compression. Furthermore, Supremo-Opt guarantees robust

performance in practical scenarios.

Index Terms—Mobile deep learning, cloud offloading, image super-resolution

Ç

1 INTRODUCTION

IN recent years, the widespread of High-Resolution (HR)
displays on mobile devices has led to unprecedented

demands for HR images. However, acquiring HR images is
costly; capturing HR images requires high-end cameras,
and images (either captured from camera or downloaded
from the Internet) are often intentionally degraded (via
downsampling or compression) to save storage. When a
user zooms into such images (e.g., to take a closer look on a
distant object or identify a tiny text), degraded resolution
significantly harms the user experience.

Image Super-Resolution (SR), a technique to reconstruct
HR image from Low-Resolution (LR) image, provides a
promising opportunity to obtain HR images without addi-
tional hardware costs. While the task has been a classical
computer vision problem, Deep Neural Network (DNN)-
based methods have recently achieved remarkable per-
formance. However, running them on mobile devices is
extremely challenging due to high computational complex-
ity. Especially, SR requires much more computation than
other tasks, making low-latency on-device execution

extremely difficult despite several recent attempts to run
DNNs (mostly for classification and detection) on mobile
devices at the scale of 1 fps [2], [3], [4]. Even with cutting-
edge framework TensorFlow-Lite, running the most opti-
mized SR model [1] on high-end mobile GPU takes more
than 5 seconds to upscale a 360p image to 1080p (Fig. 2).

In this paper, we present Supremo (Super-resolution in
mobile devices), a cloud-assisted system for low-latency SR
in mobile devices. The goal of Supremo is to enhance resolu-
tion of a zoomed-in LR image (e.g., 360p) to commodity
mobile device display resolutions (e.g., 1080p for Google
Pixel 2) in soft real-time (e.g., 100 ms).1 Supremo is com-
posed of comprehensive optimization across DNN model
architecture as well as the entire offloading pipeline to mini-
mize end-to-end latency with minimal image quality degra-
dation. Fig. 1 shows an example performance of Supremo: It
efficiently compresses the image to minimize the network
transmission latency in the offloading process while at the
same time preserve the performance gain of SR, whereas
utilizing conventional JPEG to achieve similar compression
results in annoying artifacts.

We face several technical challenges in designing
Supremo. Although several recent studies have utilized
cloud servers to offload the heavy DNN computation [5],
[6], [7], [8], [9], [10], they have been mostly focused on image
classification and object detection tasks. Simply extending
existing work for SR is non-trivial due to several reasons.
First, prior studies have paid little attention to the DNN
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1. While supporting higher resolutions (e.g., 4K UHD) may be desir-
able, display resolutions of mobile devices are limited at the moment
(e.g., even cutting-edge Galaxy S20+ only supports 3,200�1,800 resolu-
tion). In this work, we target 1080p resolution support which is similar
to common mobile multimedia applications (e.g., YouTube and Netflix
only support up to 1080p resolution at the moment).
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inference latency due to the availability of highly optimized
models (e.g., Faster R-CNN [11] object detector runs in
60 fps on NVIDIA Titan XP GPU [10]). However, SR models
incur high latency even at the servers (e.g., IDN [1] takes
77.0 ms to upscale a 640 � 360 image to 1,920 � 1,080 on
GTX 1080 Ti GPU), requiring an optimization at the model
architecture itself to minimize end-to-end latency. Second,
there exists a large gap in the data size that needs to be sent
through the wireless network (i.e., labels or bounding boxes
versus HR images), resulting in significant network trans-
mission latency. While prior studies have mostly utilized
conventional image compression (e.g., JPEG) to compress
the image size sent to the cloud, such approach severely
degrades SR performance (see Section 2.2 for details).

To tackle the aforementioned challenges, we first further
optimize state-of-the-art SR model IDN [1] to design IDN-
Lite. We observe that IDN is designed by stacking basic
blocks; inherent redundancy arises as performance incre-
ment per each block quickly becomes marginal in latter
stages. Alternatively, we gradually stack compressed unit
blocks to reduce model size with minimum performance
loss. Our approach achieves 3.01� computational complex-
ity reduction with minimal 0.1 dB Peak Signal-to-Noise
Ratio (PSNR) loss in reconstruction performance.

Second, we design a mobile-cloud cooperative execu-
tion pipeline to run the offloading process at low latency.
We first develop two data compression algorithms special-
ized for SR, namely Priority Ordering and Residual Encod-
ing. While Priority Ordering operates on the mobile-side
to offload only necessary parts of an image, Residual
Encoding operates on the cloud-side to send back com-
pressed residual signal. Furthermore, we employ Offload-
Inference Pipelining to optimize latency by parallelizing
components in the execution pipeline that consumes dif-
ferent resources (i.e., CPU, GPU, and wireless network).
Overall, Supremo upscales 360p image to 1080p in 122 ms,

which is 43.68 � faster than on-device GPU execution.
Compared to cloud offloading, Supremo reduces network
bandwidth consumption and end-to-end latency by 15.23
� and 4.85 �, respectively with 0.81 dB PSNR loss com-
pared with sending and receiving whole images. In con-
trast, using JPEG to achieve similar compression suffers
from 3.20 dB loss.

Finally, we extend Supremo to video applications (e.g., real-
time zoom-in, video streaming) to designSupremo-Opt. As off-
loading stream of images incurs large network bandwidth con-
sumption, we need to pay close attention to network latency
and resource constraints on mobile devices (e.g., LTE data
plan) as well as latency requirements of the application.
Supremo-Opt incorporates a new dynamic optimal control
algorithm inspired by Lyapunov optimization framework [12] to
maximize the impact of SR while jointly satisfying the target
latency and resource constraints under non-ideal network
conditions.

Our major contributions can be summarized as follows:

� We carefully optimize the state-of-the-art SR model
IDN to design IDN-Lite, which optimizes the infer-
ence time by 3.01�with only 0.1 dB PSNR loss.

� We develop Supremo, a cloud-assisted system to for
low-latency mobile SR. Supremo achieves 43.68�
latency gain compared to on-device mobile GPU exe-
cution, and reduces wireless network bandwidth con-
sumption and end-to-end latency by 15.23� and 4.85�.

� We extend Supremo on videos applications to
developSupremo-Opt, which incorporates a dynamic
optimal control algorithm to maximize the perfor-
mance of SR under resource and latency constraints.

� We implement Supremo on Android smartphone
and desktop server, and validate its performance via
real-world experiments.

The rest of the paper is organized as follows. We first
analyze the challenges in Section 2, followed by an overview
of Supremo in Section 3. Sections 4 and 5 provide detailed
explanation of the components of Supremo. We then intro-
duce Supremo-Opt in Section 6. We describe the imple-
mentation of Supremo in Section 7, and evaluate the
performance in Section 8. We summarize related work in
Section 10 and conclude the paper in Section 11.

2 PRELIMINARY STUDIES

In this section, we conduct preliminary studies to analyze
challenges in delivering low-latency SR in mobile devices.

2.1 Why On-Device Execution is Difficult

Due to high computational complexity, running SR on
mobile devices is extremely challenging. Table 1 compares
the complexity of representative DNNs for classification,
detection, and SR in terms of MultAdds. We use the same
setting as in [13], [14], [15] where classification assumes
ImageNet [16], detection assumes COCO [17], and SR
assumes upscaling a 360p image to 720p. For SR, PSNR on
benchmark Urban100 [18] is also compared. SR models are
significantly heavier than others (as high as 1,000�), as they
output HR images whereas others output labels or bound-
ing boxes.

Fig. 1. Performance example of Supremo with IDN [1] as the SR model.
Using JPEG to compress the image size during the offloading process
incurs annoying artifacts. With the same data size compression,
Supremo retains most of the performance gain of IDN.
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As a result, Fig. 2 shows that even with TensorFlow-
Lite, it takes more than 5 seconds to run the most opti-
mized model IDN [1] on Google Pixel 2 with Qualcomm
Adreno 540 GPU (for comparison, we also measure the
inference time of MobileNetV1 [19] provided in the
official TensorFlow-Lite demo app). Even at the cloud,
the inference latency is unignorable; DNN optimization
needs to take place especially when aiming to minimize
end-to-end offloading latency. Simply employing small-
sized models such as SRCNN [20] cannot be a solution,
as they incur significant drop in PSNR as shown in
Table 1.

2.2 Why Cloud Offloading is Challenging

As offloading for SR involves sending images and receiving
upscaled HR counterparts, large data traffic flying on the
network incurs significant network bandwidth consump-
tion and latency. For example, our evaluation in Section 8.2
shows that with 90.2 Mbps Wi-Fi connection, naively off-
loading a 640 � 360 image for � 3 upscaled 1080p image
results in 594 ms latency, out of which the DNN inference
takes only 77 ms. Such latency would further increase in
more challenging network conditions (e.g., average Wi-Fi
speed on mobile devices is 24.4 Mbps [29]).

Utilizing conventional image encoding techniques (e.g.,
JPEG) to compress data size can be a tempting option to
alleviate the latency issue. However, they come at the cost
of noticeable image quality degradation, quickly diminish-
ing the gain from SR. Specifically, the core mechanism of
image encoding is to transform the image into frequency
domain and quantize high frequency components more
coarsely, mostly concentrated on the edges in the image.
However, this directly contradicts with SR, which enhances
image quality by sharpening the edges; Fig. 3 shows that
PSNR drops sharply when IDN is applied on a JPEG com-
pressed image. Even worse, compressing beyond certain
level yields lower PSNR than applying bicubic interpolation
(the simplest upsampling method) on mobile device with-
out offloading. Fig. 1 also shows that offloading with 16.5�
JPEG compression results in annoying distortions. Thus,
specialized compression algorithms must be designed to

reduce network bandwidth consumption while minimizing
the SR performance degradation.

3 SUPREMO: OVERVIEW

Fig. 4 depicts the operational flow of Supremo. The mobile-
side operation begins with Priority Ordering, which divides
the LR image into blocks and determines which of them
should be offloaded to the cloud with highest priority based
on the expected impact of SR. Upon receiving the image
from the mobile device, the cloud upscales it with IDN-Lite,
a lightweight variant of the state-of-the-art model IDN, to
obtain the residual signal (i.e., difference) between the HR
image and bicubic interpolation. Residual Encoding leverages
the sparsity of this residual signal to compress the data size
sent back to the mobile device.

While the mobile device sends the LR image and waits
for the residual signal from the cloud, it also runs bicubic
interpolation on the LR image in parallel on a separate
thread. Upon receiving the encoded residual signal, the
mobile device decodes and merges it on top of the bicubic
interpolated image and renders it on the screen. Finally, the
overall offloading process is executed with Offload-Inference-
Pipelining to parallelizable components (i.e., network trans-
mission, DNN inference, encoding and decoding) and opti-
mize end-to-end latency.

4 DESIGN OF IDN-LITE

We first design an optimized DNN to minimize the infer-
ence latency. From the two state-of-the-art optimized mod-
els IDN [1] and CARN [15], we choose IDN [1] as starting

TABLE 1
Complexity Comparison of DNNs for Various Tasks in Terms of

the Number of MultAdds Required for Inference

DNNs for SR are also compared in terms of PSNR.

Fig. 2. Inference time comparison of DNNs on mobile and desktop
GPUs.

Fig. 4. Overall system architecture of Supremo.

Fig. 3. Impact of JPEG compression on SR performance.
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point as it fits better for our purpose. Specifically, although
the two models show similar performance on benchmark
datasets, CARN-M takes RGB image as input whereas IDN
takes only Y channel in YCbCr color space and applies bicu-
bic interpolation on Cb and Cr channel. Consequently,
CARN-M incurs 3�more wireless network bandwidth con-
sumption and network latency than IDN.

Fig. 5 depicts the architecture of IDN and our lightweight
variant IDN-Lite. Overall, the number of features is scaled to
0.75�. The initial two convolutional layers for feature
extraction are modified to gradually increase the number of
features. We also replace the last upconvolutional layer
with 17 � 17 kernel to a sub-pixel convolutional layer [30]
with 3 � 3 kernel to enhance efficiency.

Our key idea lies in the modified cascade architecture.
IDN stacks four 7-layered Distillation Blocks (or DBlocks) as
shown in Fig. 5a. Such architecture embeds structural
redundancy; performance gain per each additional DBlock
becomes marginal in latter stages. Fig. 6a shows that the dif-
ference between the output feature maps of each DBlock
averaged over the feature dimension becomes more sparse
in latter stages, meaning that the additional information
(i.e., performance gain) becomes marginal. Generalizing
this on benchmark Urban100 [18], Fig. 6b shows that PSNR
gain per additional DBlock becomes marginal when the
number of DBlocks is larger than two.

To this end, we arrive at two ideas: (1) stacking just two
DBlockswould yield almost the same performance as the orig-
inal model, and (2) since the additional information per each
DBlock becomes marginal in latter stages, gradually reducing
the stacked DBlock size would be a more efficient design than
simply repeating the equal-sized ones. Accordingly, we only
stack one DBlock and one compressed 5-layeredDBlock-Lite as
depicted in Fig. 5b. Our evaluation verifies that such design

yields 3.01� complexity reduction (168.7G versus 56.1G Mul-
tAdds)with only 0.1 dB PSNR loss.

5 SUPREMO: EXECUTION PIPELINE

In this section, we detail techniques to run the offloading
process at low latency. We first develop two specialized
data compression algorithm to reduce network bandwidth
consumption; Priority Ordering operates on the mobile-side
to offload only necessary parts of an image, while Residual
Encoding compresses the data sent back to the mobile
device. We also develop Offload-Inference Pipelining to run
components in the execution pipeline that consumes differ-
ent resources in parallel to optimize end-to-end latency.

5.1 Priority Ordering

The question we want to answer here is the following: “If we
could apply SR only on part of an image, which part should have
the top priority?” It is shown in Fig. 7 that when we run both
IDN and bicubic interpolation on an image in Fig. 7a and
observe the residual signal (i.e., difference) between the two
as shown in Fig. 7b, they differ mostly on the edges in the
image. From this observation we obtain some insights: (1)
Offloading only the parts of an image that contain edges to
the cloud and running bicubic interpolation on the rest on
the mobile device will effectively yield the same perfor-
mance as offloading the whole image, and (2) the part of the
image where the expected impact of SR would be the great-
est is where the edges are most concentrated.

Based on this idea, Priority Ordering operates as follows.
First, we detect edges in an image using Canny edge detector,
which can robustly detect edges in the image as in Fig. 7c. As
the complexity of Canny edge detector for anH �W image is
OðHW � log ðHWÞÞ, its latency is negligible on commodity
devices (e.g., 2 ms for 640 � 360 image in Google Pixel 2).
Second, we divide the image into n� n blocks, and sort them

Fig. 5. Model architectures of IDN and IDN-Lite.

Fig. 6. Performance analysis of IDN.

Fig. 7. Motivation of Priority Ordering. As the performance of DNN-based SR and bicubic interpolation differ only on the edges in the image, it only
suffices to send the edge blocks.
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according to edge intensity. Finally, we create a priority queue
of blocks based on the sorted order that lets us determine
which block in an image has the highest priority for offloading.
This prioritized list of blocks is utilized to efficiently adapt the
amount of data offloaded under resource constraints and
latency requirements, aswill be introduced in Section 6.

5.2 Residual Encoding

Compared to previous offloading frameworks for classifica-
tion or detection [5], [6], [8], [9], [10] where the size of down-
link data (i.e., label or bounding box coordinates) is
negligible compared to that of uplink (i.e., image stream),
offloading for SR is much more challenging as the server
needs to send back a stream of HR frames to the client. We
employ Residual Encoding to compress this huge downlink
data by exploiting the sparsity of residual signals. As illus-
trated in Fig. 8, Residual Encoding operates in a cooperative
manner, where the client sends the LR frame to the server
and runs bicubic interpolation in background, while the
server sends back the residual signal (i.e., difference)
between the HR frame reconstructed by DNN and bicubic
interpolation. Not only does this approach fit well with the
operation of Priority Ordering (i.e., the mobile-side runs
bicubic interpolation on the image), it also enables further
data compression, as residual signal between HR frame and
bicubic interpolation is more sparse than that of the HR
frame. Furthermore, when the DNN at the cloud-side
employs global residual learning as in IDN (i.e., the output
of the network is the difference from bicubic interpolation),
residual signal can be obtained without any overhead.

For encoding of the residual signal, we take the similar
approach taken in JPEG; we transform raw pixel values into
frequency domain using 2-dimensional Discrete Cosine
Transform (DCT) and quantize their coefficients. Fig. 9
shows that such process makes the residual signal extremely
sparse, thus enabling a significant size compression. Note
that applying the quantization process directly to the output
HR image would normally incur significant degradation on
image quality, as analyzed in Section 2.2. However, utilizing
the residual signal helps alleviate such degradation since the
majority of coefficients are already zero (i.e., quantization
does not incur additional degradation).

To achieve near-entropy compression, we use Huffman
encoding after applying run-length encoding and zigzag
scan. Huffman code table is generated offline from pre-
collected image dataset to remove the overhead of creating
the optimal code for each input frame. As quantized resid-
ual signals are very sparse (zero coefficients taking up more
than 90 percent), a single universal code yields almost the
same performance, as will be verified in Section 8.

5.3 Offload-Inference Pipelining

While the aforementioned compression algorithms dramati-
cally reduce network bandwidth consumption (and thus net-
work latency), they incur additional processing overhead.
Simply running them sequentially may cause high latency,
diminishing the gain in network latency.We employOffload-
Inference Pipelining technique to retain the gain. As depicted
in Fig. 10, rather than processing the image as a whole, we
divide it into macroblocks2 and process each of them as a
separate image. As each component in the offloading process
can run in parallel (e.g., the server can run DNN on GPU,
encode residual signal on CPU, and send encoded data to
the client in thewireless link simultaneously), such approach
can greatly optimize end-to-end latency.

An important parameter to be determined for pipelining
is the number of macroblocks in which the image is divided
into. Dividing the image too finely suffers from perfor-
mance degradation due to the following issues: i) blocking
artifacts due to more macroblock boundaries, and ii) CPU-
GPU memory copy overhead in DNN inference computa-
tion. Through an empirical evaluation of the tradeoff in
Section 8, we divide each input image into four macroblocks.

Note that while pipelining requires that each macroblock
is offloaded sequentially, Priority Ordering sorts the blocks
according to the number of edge pixels, regardless of which
macroblocks they are included in. This issue can be simply
resolved by rearranging the transmission order of blocks in
the priority queue so that the server can receive the blocks
belonging to each macroblock consecutively.

5.4 Frame Merging and Rendering

At the final stage, we merge the decoded residual signal on
top of the bicubic interpolated image, and render it on the
screen. The frame merging step introduces negligible
latency overhead compared to prior processing steps, as it
involves simply adding the two arrays and clipping the val-
ues outside the pixel range. While applying different
upscaling on different sub-images and stitching them may
yield blocking artifacts, we observe such issue not so

Fig. 8. Operational flow of residual encoding.

Fig. 9. Residual encoding process and entropy comparison.

Fig. 10. Operation of offload-inference pipelining.

2. To avoid confusion with the basic unit in the compression algo-
rithms (8 � 8 block), we use the term macroblock here to indicate the
pipeline unit.
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significant in Supremo. It is because we apply bicubic inter-
polation only to regions with very few or no edges (e.g.,
background). For such regions, applying bicubic interpola-
tion does not make any difference compared to applying
SR, and thereby incurs minimal artifacts (see Figs. 1 and
13 for visual examples).

To further deal with the deblocking artifact issue, we can
utilize the deblocking filter commonly used in video codecs
(e.g., H.265/HEVC) to alleviate the blocking artifacts. As
deblocking filter does not impose much overhead (only 13
percent of the total latency in the entire real-time HEVC
video decoding process on ARM [31]), employing it will not
significantly affect the end-to-end latency (besides, it can
also be parallelized using pipelining).

5.5 Putting Things Together

Algorithm 1 summarizes the overall flow. Given an LR
image, edges are detected using Canny edge detector (line 2).
Blocks that contain edge pixels are inserted to the priority
queue to be offloaded (lines 3–5). Afterwards, the mobile
runs bicubic interpolation in background simultaneously
while offloading the priority queue and receiving and decod-
ing the residual signal (line 6). Finally, the decoded residual
signal (received from the cloud) is merged on top of bicubic
interpolation to generate the HR image (line 7), and rendered
on the screen (line 8).

6 ON-DEMAND OPTIMIZATION ON VIDEOS

In this section, we introduce Supremo-Opt, Supremo
extended for video applications (e.g., real-time zoom-in,
video streaming). Offloading continuous frames incurs
large network bandwidth consumption, incurring signifi-
cant network latency especially under non-ideal network
conditions (e.g., bandwidth fluctuation in Wi-Fi [32]). There-
fore, we need to pay close attention on latency and resource
constraints (e.g., LTE data plan), as well as user demands
on latency-performance tradeoff (e.g., one might want to
sacrifice frame rate for better image quality, while another
may put more emphasis on seamless latency). To tackle the
challenge, we formulate a dynamic optimal control algo-
rithm inspired by Lyapunov optimization framework [12]
(which has been commonly utilized for video streaming [32],
[33], [34]) to maximize the impact of SR while satisfying
user-specified latency requirement and resource constraints.

Fig. 11 illustrates the operation of Supremo-Opt: for each
frame, Priority Ordering (denoted as PO) first sorts the
blocks by edge intensity, as in baseline Supremo. Further-
more, we also extend Caching Mechanism (denoted as CM)

commonly used in prior continuous mobile vision sys-
tems [3], [4], [5], [10] to exploit the temporal redundancy of
continuous frames and reuse the results from the previous
upscaled HR frame instead of offloading (note that the idea
of Caching Mechanism has been mostly utilized for image
classification or object detection tasks in prior works; we
verify that it can be effective for SR as well in Section 8.6).
Once the priority queue of edge blocks sorted in edge inten-
sity is created, we determine how many blocks to offload
based on latency requirement, estimated network band-
width, and resource constraints. As the impact of SR is
expected to be stronger on blocks with higher edge inten-
sity, this approach guarantees that resources are used in a
most efficient manner.

Specific operation of the Caching Mechanism is depicted
in Fig. 12. We first run the Hexagon Search-based block
matching algorithm [35] between the consecutive LR frames
to find matching blocks. We use the Mean Absolute Error
(MAE) between the pixel values as distance metric. For the
blocks with matching distance below a pre-defined thresh-
old, we reuse the corresponding blocks in upscaled previ-
ous HR frame rather than offloading it to the cloud for
processing. With higher distance threshold, the number
of blocks reused increases (thus reducing the network
transmission latency), while at the same time degrade SR
performance due to possible distortions that occur in
stitching upscaled blocks from adjacent frames. The per-
formance tradeoff is analyzed in Section 8.6). We also
note that incorporating highly-optimized video encoding
(e.g., H.264) can further improve the performance of
Caching Mechanism, which we would like to investigate
in our future work. Specifically, it can benefit our system
in two aspects: (i) optimize the latency of calculating the
motion vectors between the input frames, and (ii) reduce
the data size by sending the residual signals between the
continuous frames.

Objective. Our goal is to efficiently allocate offloading
resources on input frame sequence to maximize the overall
impact of SR. We define the utility (i.e., reward) Ut for frame
t as a logarithmic function of the ratio of the number of edge

Fig. 11. Overview of Supremo�Opt.

Fig. 12. Operation of caching mechanism applied for SR.

Algorithm 1. Runtime Execution Flow

1: PriorityQueue fg
2: Edge CannyEdgeDetectorðLRÞ
3: for Block in LR do
4: if edge pixel present in Block then
5: PriorityQueue PriorityQueue [Block
6: Bicubic RunBicubicInBackgroundðLRÞ

Residual OffloadðPriorityQueueÞ
7: HR AddðBicubic; ResidualÞ
8: RenderHR on screen
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blocks covered by SR, either by offloading (Yt) or caching
(Zt), to the total number of edge blocks in the frame (Xt)

Ut ¼ log 1þ Yt þ Zt

Xt

� �
; (1)

where constant term one is added to make the utility value
positive. The rationale behind this modeling is to reflect the
fact that the increments in the impact SR applied according
to the sorted priority queue will gradually decrease, as will
be verified in Section 8.

Constraints. We assume that the application can offload
dtarget (Mbps) on average due to network usage budget (e.g.,
LTE data plan). Furthermore, to satisfy user-specified
latency requirement while preventing undesirable resource
wastage caused by stale data arriving after the frame has
already been rendered, we adjust the number of blocks to
offload based on estimated network bandwidth, so that off-
loading process terminates within target latency Lmax. Spe-
cifically, during each offloading event, the server and the
client exchange timestamps to estimate the uplink and
downlink bandwidth, assuming that the clocks are synchro-
nized (e.g., by IEEE 1588 Precision Time Protocol). We use
exponential moving weight average to estimate network
bandwidth for next offloading event as in [32].

To summarize, our problem is formulated as follows:

Maximize
XN
t¼1

Ut ¼
XN
t¼1

log 1þ Yt þ Zt

Xt

� �
;

subject to max
b2 � Yt

BWup;t
þ gt � s2 � b2 � Yt

BWdown;t
; TSR; Yt � Tdec

� �

� Lmax;

1

N

XN
t¼1
ð1þ gt � s2Þ � b2 � Yt � dtarget;

(2)

where b and s represent the block size and the scale factor, gt

represents the compression ratio of Residual Encoding (esti-
mated in a similar manner as the network bandwidth),
BWup;t; BWdown;t represent the estimated uplink and downlink
bandwidth for the tth offloading event amongN total offload-
ing events. TSR represents the DNN inference latency for SR,
and Tdec represents the residual decoding latency per each
block, which is profiled at the target mobile device (e.g., it
takes 5ms to decode a 8� 8 block inGoogle Pixel 2). Determin-
ing Yt to satisfy the first constraint ensures that the offloading
latency does not exceed the latency constraint; note that as we
employ Offload-Inference Pipelining, the end-to-end offload-
ing latency is bounded by the largest latency component in
the execution pipeline (i.e., network transmission, processing
steps at themobile and the cloud). The second constraint guar-
antees that the application satisfies the network usage budget.

Resource Constraints into Virtual Queues. Time average
resource constraints can be modeled and incorporated in
the Lyapunov optimization framework as virtual queue to
be stabilized. We model network usage constraint as Qd½t�
whose backlog evolves as follows:

Qd½tþ 1� ¼ max Qd½t� þ ð1þ gt � s2Þ � b2 � Yt � dtarget; 0
� �

:

(3)

Stabilizing Qd½t� guarantees that network usage constraint is
satisfied. Similarly, other resource constraints (e.g., energy
consumption) can be incorporated easily as virtual queues.

Drift-Plus-Penalty Minimization. Lyapunov optimization
framework minimizes drift-plus-penalty. Before defining
drift-plus-penalty, Lyapunov drift D½t� is defined as the dif-
ference between Lyapunov function L½t� per time slot (or
offloading event), which is the square of the virtual queue
backlog Qd½t�

D½t� ¼ L½tþ 1� � L½t� ¼ 1

2
Qd½tþ 1�ð Þ2� Qd½t�ð Þ2

� �
: (4)

We also define penalty as �Ut to follow the conventional
penalty minimization in Lyapunov optimization. Finally,
drift-plus-penalty (DPP ½t�) is defined as

DPP ½t� ¼ D½t� þ V � penalty½t� ¼ D½t� � V � log 1þ Yt þ Zt

Xt

� �
;

(5)

where V is a positive constant that controls the tradeoff
between virtual queue backlog and deviation from theoreti-
cal bound of maximum utility.

Greedy Scheduling Algorithm. By greedily minimizing
DPP ½t� at each time slot, Lyapunov optimization framework
achieves time-average utility maximization performance
deviating by at most Oð1=V Þ from optimality, while satisfy-
ing time-average resource consumption deviating from con-
straints by at most OðV Þ [12]. In Supremo-Opt, the greedy
scheduling algorithm involves iteratively computing
DPP ½t� for each possible Yt (ranging from 0 to Xt � Zt) and
choosing the value that maximizes the DPP ½t�. As calculat-
ing DPP ½t� is a simple computation, greedy scheduling
algorithm incurs minimal overhead at runtime. For exam-
ple, with the 640 � 360 input image divided into 8 � 8
blocks, Xt becomes 3,600 (=80 � 45), and calculating DPP ½t�
for all possible Yt takes less than 1 ms in Google Pixel 2.

7 IMPLEMENTATION

We implement both the client and the server of Supremo
fully based on commodity hardware.

7.1 Client

We implement the client side of Supremo on Google Pixel 2
equipped with QualcommKyro octa-core CPU (4� 2.35 GHz,
4 � 1.9 GHz) running on Android 8.1.0. We use Camera2
API [36] to create a camera capture session. For each input
frame, we extract edges using the Canny edge detector in the
OpenCV for Android SDK version 3.4.1 [37]. Block matching
algorithm in Caching Mechanism is implemented using
Android NDK r17c [38]. For bicubic interpolation and inverse
discrete cosine transform for Residual Decoding, we use the
functions provided in theOpenCV aswell.

The client is connected to the server via a TCP connec-
tion, as TCP guarantees the in-order-delivery of the edge
blocks in Priority Ordering. For each block offloaded, a
2-dimensional index ði; jÞ is included as a header to indicate
its location in the original frame. Assuming that the index
of the block can be represented with 1 byte per dimension
(i.e., the LR frame is divided into no more than 256 � 256
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blocks), header transmission overhead is typically negligi-
ble (e.g., when block size is 8 � 8, the overhead becomes
3.125 percent).

7.2 Server

The server side of Supremo is implemented on a desktop PC
running on Ubuntu 16.04 OS, equipped with Intel Core i7-
8700 3.2 GHz CPU and a NVIDIA GTX 1080 Ti GPU. We
implement most of the server side functions in Python 3.5.2
and utilize Numba [39], a Just-In-Time (JIT) compiler for
Python, to accelerate the code execution speed comparable
to C/C++. Upon receiving the LR frame from the client, the
server upscales it with the DNN implemented using
PyTorch 0.4.0 [40]. For discrete cosine transform in Residual
Encoding, we use Python OpenCV 3.4.5 [41].

8 EVALUATION

8.1 Experimental Setup

DNN Training. We train IDN-Lite using DIV2K dataset [42]
composed of 900 2K resolution images. For training, we use
randomly cropped 17 � 17 patches from the LR images (the
size of the HR patches are determined accordingly by the
upscale factor), with random horizontal flips and 90� rota-
tions for data augmentation. We use the ADAM opti-
mizer [43] for training, with b1 ¼ 0:9, b2 ¼ 0:999, and
� ¼ 10�8. Initial learning rate is set as 10�4 and halved after
every 2� 105 minibatch updates (with batch size 64) until it
reaches 1:25� 10�5. The training terminates after 8� 105

minibatch updates. We use four widely used benchmark
datasets for validation: Set5 [44], Set14 [45], BSD100 [46],
and Urban100 [18]. For fair comparison with the original
IDN, we evaluate IDN-Lite trained in YCbCr color space
with Y value range (16, 235). However, Y value range in
YUV420 format employed in Android Camera2 API is
(0, 255]). Accordingly, we train our model in corresponding

range for subsequent evaluations. When trained in such
range, the absolute PSNR value of the trained model (and
also bicubic interpolation) decreases due to increased quan-
tization error, but the gain remains almost the same as
when trained in (16, 235) range.

Evaluation Dataset. For repeatable evaluation Supremo,
we obtain uncompressed 30 fps 1080p (1,920 � 1,080) videos
from CDVL database [47] containing diverse real-world
scenes to generate datasets of 50 images and 20 videos (7 sec-
onds per video). We denote them as CDVL-I and CDVL-V,
respectively.3 Unless specified otherwise, evaluation ass-
umes scale factor � 3 (640 � 360 to 1,920 � 1,080).Topology.
We evaluate the performance of the end-to-end system by
connecting the mobile device to the desktop server through
a Wi-Fi connection in 2.4 GHz band (IEEE 802.11n) with
90.2 Mbps network bandwidth.

8.2 Performance Overview

We first evaluate the overall performance of Supremo com-
pared with baselines in terms of end-to-end offloading
latency and image quality.

Latency. Fig. 14 shows the end-to-end latency of Supremo
for upscaling 360p image to 1080p, compared with full on-
device mobile GPU execution using TensorFlow-Lite and
full offloading approach of sending the whole image to the
cloud and receiving the upscaled HR counterpart. Indoor
office scenes captured from the camera are fed as input, in
which around 50 percent of the image blocks are back-
ground blocks with no edges (similar to the edge block
ratios of the images in the CDVL-I dataset). Supremo only
offloads the blocks that contain at least one edge pixel.
Overall, adding on each of our techniques gradually

Fig. 13. Visual examples of the performance of Supremo. Top rows show the upscaled images by baseline full offloading (left) and Supremo (right),
respectively. Bottom rows show the heatmaps of how Supremo applies different upscaling techniques on image blocks (left), and close-view patch
comparison of the upscaled images (right). Notice that Supremo yields similar image quality compared to baseline full offloading, with minimal visual
artifacts.

3. Datasets we use for evaluation can be found at https://www.
dropbox.com/sh/03erqyagxounmj9/AADyeOIbfxKogxBM84S3fc9na?
dl=0.
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reduces the latency. In total, Supremo upscales 360p image
to 1080p in 122 ms, which is 43.68� and 4.85� faster com-
pared to full on-device execution and full offloading,
respectively. The performance gain of Supremo mainly
comes from the fact that Supremo enables a tight coopera-
tion between the mobile and the cloud to effectively balance
the computational load and the network bandwidth con-
sumption required for SR. In this sense, we expect that the
performance of Supremo would be scalable across different
network conditions (e.g., 4G LTE).

Image Quality. Qualitatively, Fig. 13 shows that Supremo
preserves most of the sharp edges reconstructed by SR.
Note that Supremo incurs minimal blocking artifacts as
bicubic interpolation is applied only to regions with no
edges as shown in the heatmap. Quantitatively, Table 2
shows that on Urban100, Supremo minimizes the loss of
PSNR/SSIM compared to full offloading, whereas utilizing
JPEG to achieve similar compression results in significant
performance degradation.

8.3 Performance of IDN-Lite

Next, we present detailed component-wise evaluations of
Supremo. We first evaluate the performance of our proposed
IDN-Lite. Table 3 compares the PSNR and inference time of
IDN-Lite compared with with baseline IDN and IDN-D1,
which is obtained by naively removing three DBlocks (i.e.,
leaving only oneDBlock) from the original IDN. Scale�n indi-
cates downsampling the original image by a factor of n and
recovering the original resolution with the DNN. IDN-Lite is
2.48� faster than IDN (and comparable to IDN-D1), while its
PSNR loss is around 0.1 dB. In terms of PSNR recovery

(calculated as the ratio of PSNR loss of IDN-Lite over that of
IDN-D1), IDN-Lite shows better performance on larger
images, as it has deeper architecture than IDN-D1.

8.4 Data Compression Performance

Priority Ordering. Fig. 15 shows an example operation of Pri-
ority Ordering. After Canny edge detector extracts edges
from the frame (Fig. 15a) as shown in Fig. 15b, blocks are
offloaded in the order of edge intensity, indicated as red in
Figs. 15c, 15d, and 15e. Fig. 16a shows that the PSNR of out-
put frame obtained with such offloading mechanism
quickly reaches the case when the whole frame is offloaded,
with only 0.23 dB PSNR loss when all the edges in the frame
are offloaded as in Fig. 15e. Compared with the case of ran-
domly selecting the blocks to offload (denoted as Random),
we can see the effectiveness of Priority Ordering in deter-
mining which blocks should be offloaded with highest pri-
ority. Generalizing this to the CDVL-I dataset, Fig. 16b
shows that offloading only the edge blocks achieves 2.3�
and 1.99� data compression with only 0.3 and 0.2 dB PSNR
loss for �2 and �3 scale, respectively.

Residual Encoding. Fig. 17 shows the performance of Residual
Encoding onCDVL-I dataset. As shown in Fig. 17a, utilizing the
residual signal not only yields 2.43� smaller entropy compared
to the raw frame (thus enabling further compression), but also
reduces PSNR loss due to quantization by 0.34 dB, verifying the
effectiveness of Residual Encoding. Fig. 17b compares the
encoding performance of various combinations of encoding
algorithms for �2 and�3 scale. While Huffman code (denoted
as H) is the optimal prefix code, its performance is bounded by
1 bit per pixel, as it is a one-to-one mapping between symbol

TABLE 2
PSNR/SSIM Evaluation on Urban100 (Trained on YUV420

Color Space With Y Range [0, 255] Used
in the Android Camera2 Library

Scheme PSNR (dB) SSIM

Bicubic interpolation 23.11 0.7370

Full offloading 26.00 0.8358

JPEG 24.96 0.7862

Supremo 25.45 0.8121

Fig. 14. End-to-end latency of Supremo compared to full on-device execu-
tion and baseline full offloading. PO, RE, and OIP denotes Priority Order-
ing, Residual Encoding, andOffload-Inference Pipelining, respectively.

TABLE 3
PSNR (dB)/Inference Time (ms) of IDN-Lite Compared With Baselines
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and code. Combining run-length encoding (denoted as R)
breaks this bound and achieves near-entropy compression.
Since quantized residual signals are very sparse, additional gain
of zigzag scan (denoted as Z) is marginal, and therefore we do
not employ it in our implementation for latency efficiency. Fur-
thermore, the sparsity of residual signals allows a single global
Huffman code generated from CDVL-I dataset to yield almost
the same performance, eliminating the overhead of having to
generate optimal code for each input frame. In summary, com-
pared to sending rawHR frame which requires 8 bits per pixel,
Residual Encoding achieves 25.53� and 18.99� compression
for�2 and�3 scale, respectively.

Combined Performance. Table 4 shows the combined perfor-
mance on CDVL-I for�3 scale. For Priority Ordering, we only
offload blockswith edge intensity over 0.15. As PriorityOrder-
ing and Residual Encoding are independent and complimen-
tary to each other, combining them results in a synergetic gain
in compression performance. Overall, combining the two
achieves 15.23� compression with 0.81 dB PSNR loss (still
1.65 dB higher than bicubic interpolation), whereas achieving
comparable compression with JPEG suffers from 3.20 dB
PSNR loss. Notice that simply re-training IDN with HR and
JPEG-compressed LR image pairs does not solve the problem
(1.51 dB inferior toSupremo), as it is hard for a single IDN-Lite
to learn both SR and JPEG artifact removal simultaneously.

8.5 Performance of Offload-Inference Pipelining

Impact of Macroblock Size on SR Latency. We first analyze the
impact of the macroblock size on SR performance by divid-
ing the images in CDVL-I dataset into different number of

macroblocks and processing them separately. Fig. 18a
shows that dividing the image too finely (e.g., over 64 mac-
roblocks) suffers from performance degradation in terms of
both PSNR and latency due to issues stated in Section 5.3,
diminishing the potential benefit from pipelining. Closely
analyzing the tradeoff, we set the number of macroblocks as
4 for subsequent evaluations. Note that the optimal value
would depend on various factors including the image con-
tent and sizes, which we would like to further investigate in
future to make our system more applicable in diverse
settings.

End-to-End Latency. Fig. 18b shows the gain of pipelining
in offloading latency, defined as the total delay between the
time the client starts sending frame to the server and fin-
ishes receiving and decoding residual signal (the frame
merging latency is omitted as it is negligible compared to
other steps). For fair comparison, we evaluate in a static
office environment with 2.4 GHz Wi-Fi link (802.11n) and
offload 150 8 � 8 blocks in a 320 � 240 image for �4 scale.
As pipelining enables parallel execution of functional com-
ponents at different resources, offloading latency is reduced
by 31.6 percent.

8.6 Performance of Supremo-Opt

Effectiveness of Caching Mechanism for SR. We first verify the
effectiveness of Caching Mechanism applied for super-reso-
lution. Fig. 19 shows an example operation of the Caching
Mechanism applied on CDVL-V video #0. While baseline
approach of comparing the blocks in the same coordinate
(as in [3], [5]) suffers from poor cache hit rate when motion
is present between frames (frames 0 to 40 and 80 to 140), uti-
lizing Hexagon Search (HEXS) block matching algorithm (as
in [4], [10]) yields higher cache hit rate with minimal PSNR
loss. Generalized on the CDVL-V dataset, Fig. 20 shows the
performance for different distance threshold for caching.
While higher threshold yields higher cache hit rate (i.e., off-
load less), PSNR loss increases significantly as well. Based
on experiments on diverse videos for various scale factors,
we empirically set the threshold to 3 in the subsequent eval-
uation of Supremo-Opt.

Supremo-Opt Under Various Resource Constraints. We eval-
uate Supremo-Opt for various target frame rate and net-
work usage budget. For comparative evaluation, we
implement Supremo-Opt in Python and emulate its opera-
tion using an LTE TCP throughput trace measured with
Iperf in a residential environment with Google Pixel 2 and
the desktop server as client and server, respectively. The
measured bandwidth is 17.93 Mbps on average, and we
assume that the uplink and downlink equally shares the
bandwidth. Fig. 21 shows that in general, Supremo-Opt off-
loads more when latency requirement is lenient (i.e., target
fps is low) and data budget is abundant, resulting in higher

Fig. 15. Example operation of priority ordering. Red blocks in the heatmaps in (c)-(e) indicates the offloaded image blocks.

Fig. 16. Performance of priority ordering.

Fig. 17. Peformance of residual encoding.
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PSNR. As target frame rate increases, average PSNR
decreases as data budget is split across more number of
frames. In terms of network usage, Lyapunov optimization
guarantees that Supremo-Opt does not consume more than
the available budget, while under-utilization occurs when
either i) the number of edge blocks to offload is smaller than
data budget (e.g., target frame 10 fps, data budget 12 Mbps),
or ii) network bandwidth is insufficient (e.g., target frame
30 fps, data budget 12 Mbps).

9 DISCUSSION AND FUTURE WORK

In this section, we discuss possible issues that can be consid-
ered to further improve Supremo, which we would like to
deal with in our future work.

Integration With On-Device Deep Learning. Supremo can be
incorporated with on-device inference systems to seek for
further balance between the mobile and the cloud. Specifi-
cally, dynamically adjusting the number of edge blocks off-
loaded to the cloud and processed on the mobile depending
on the network conditions would make Supremo more use-
ful in diverse practical environments.

Energy Consumption. While we only consider network
usage budget for the resource constraint in designing
Supremo-Opt, energy consumption can also be considered
similar to [32], [48]. Specifically, it can be done bymonitoring

the battery status and incorporating energy constraint in the
Lyapunov optimization framework as a virtual queue to be
stabilized, defined similarly as in Eq. (3). More fundamen-
tally, Supremo-Opt can be extended to (i) profile the energy
consumption of different wireless networks (e.g., Wi-Fi,
LTE, 5G) as well as various upscaling algorithms (e.g., bicu-
bic, linear, or nearest neighbor interpolation), and (ii) jointly
determine the local upscaling algorithm, wireless network,
and the amount of data offloaded tomaximize the PSNR.

Potential Applications. We plan to improve Supremo to
support higher resolutions (e.g., 2K and above), which
requires further optimization in various components in the
system. We also envision that combining Supremo with
other technologies (e.g., object detection, face recognition)
will further diversify continuous mobile vision services. For
example, Supremo can be used to enhance safety in self-
driving vehicles by improving the resolution of distant
objects that appear very small in the frames for accurate
detection.

10 RELATED WORK

Image Super-Resolution. Ever since SRCNN [20] took the first
step of employing DNN for image super-resolution, various
model architectures have been actively studied in recent
years [1], [15], [25], [26], [28], [30], [49]. Supremo enables
low-latency super-resolution on mobile devices through
cloud offloading.

Continuous Mobile Vision. LiKamWa et al. [50] optimize
energy consumption of image sensors for continuous
mobile vision, while Starfish [51] efficiently supports con-
current vision applications. Supremo is in line with prior
work on continuous mobile vision, but has a clear distinc-
tion in that it considers low-latency super-resolution which
has not been investigated yet.

Fig. 18. Performance of offload-inference pipelining.

Fig. 19. Caching performance on CDVL-V video #0. Fig. 20. Caching performance on CDVL-V.

TABLE 4
Compression Performance Comparison of Supremo and Baselines on CDVL-I

Approach Total network bandwidth consumption (Mbits) Average PSNR (dB)
Up Down Total Compression

Bicubic - - - - 31.35

Baseline 87.89 791.02 878.91 1� 33.81

PO 30.95 278.57 309.52 2.84� 33.19

PO+RE (Supremo) 30.95 26.77 57.72 15.23� 33.00

JPEG 4.55 52.39 56.94 15.44� 30.61

JPEG w/ retrained IDN 4.55 52.39 56.94 15.44� 31.49
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On-Device Deep Learning Inference. Several studies have tack-
led the challenge of running DNNs on mobile devices by
compressing the model size [52], [53], [54], accelerating the
inference speed [2], [3], [4], [55], [56], [57], [58], [59], design-
ing a resource-aware model size adaptation algorithm [60],
[61], and scheduling multiple DNNs concurrently run-
ning [62], [63]. However, on-device deep learning compro-
mises with either low frame rate (e.g., 1 fps [3]) or small
input image size (e.g., 128x128 [54]) due to lack of resources.
Recently, MobiSR [64] utilized heterogeneous mobile pro-
cessors to accelerate on-device super-resolution, but it takes
more than 750 ms to upscale the 320 � 180 input image to
1280 � 720. MobiSR can be combined with Supremo to
enable further collaboration between the mobile and the
cloud (e.g., by allowing the mobile-side to apply super-reso-
lution on some of the edge blocks detected in Priority
Ordering using mobile GPU) to minimize end-to-end
latency.

Offloading for Mobile Vision. MAUI [65] proposes an
energy-aware offloading decision framework, while
Gabriel [66] uses cloudlets for offloading in wearable devi-
ces. OverLay [7] utilizes offloading for mobile AR. Visual-
Print [67] offloads extracted features rather than raw image
to reduce network usage. Glimpse [5] enables real-time
object tracking by offloading only trigger frames for detec-
tion and tracking them in local device. Marvel [8] and Liu
et al. [10] design real-time detection and tracking system for
mobile AR via offloading. Marvel [8] utilizes inertial sensors
for tracking and occasionally offloads the images to cali-
brate tracking errors, while Liu et al. [10] employ a suite of
techniques built on video encoding. EagleEye [68] utilizes
the cloud server for executing multi-DNN face identifica-
tion pipeline at low latency. MCDNN [6] determines
whether to process a frame in local or offload based on
energy and network usage budget, but does not take into
account network conditions. Perhaps the most similar
approach to Supremo is DeepDecision [9], which elaborates
MCDNN by considering network conditions as well in the
optimization framework. However, it cannot be employed
for Supremo, as it operates in 1 fps scale, and more impor-
tantly, optimizes network bandwidth consumption by
adapting the frame resolution using video encoding, whose
operation directly contradicts with super-resolution.
Recently, GRACE [69] customized the JPEG quantization
matrix coefficients to minimize the performance loss of
DNNs for image segmentation and classification in the off-
loading process. GRACE can be incorporated in Supremo to

further improve compression performance in Residual
Encoding.

11 CONCLUSION

We presented Supremo, a cloud-assisted system for low-
latency SR in mobile devices. Supremo incorporates various
techniques ranging from DNN optimization, specialized
data compression algorithms, and implementation tech-
nique to optimize latency. Supremo achieves 43.68� faster
latency than on-device mobile GPU execution, and reduces
network bandwidth consumption by 15.23� and end-to-
end latency by 4.85� with 0.81 dB PSNR loss compared to
baseline offloading, whereas JPEG with similar compression
suffers from 3.20 dB loss.
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