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ABSTRACT
Exploiting both LTE and Wi-Fi links simultaneously enhances the
performance of video streaming services in a smartphone. However,
it is challenging to achieve seamless and high quality video while
saving battery energy and LTE data usage to prolong the usage
time of a smartphone. In this paper, we propose REQUEST, a video
chunk request policy for Dynamic Adaptive Streaming over HTTP
(DASH) in a smartphone, which can utilize both LTE and Wi-Fi.
REQUEST enables seamless DASH video streaming with near opti-
mal video quality under given budgets of battery energy and LTE
data usage. Through extensive simulation and measurement in a
real environment, we demonstrate that REQUEST significantly out-
performs other existing schemes in terms of average video bitrate,
rebuffering, and resource waste.

KEYWORDS
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1 INTRODUCTION
Multi-homing enables smartphones to utilize multiple network in-
terfaces, e.g., LTE and Wi-Fi, simultaneously to enhance the quality
of experience (QoE) for the end users. Among various mobile ap-
plications, dynamic adaptive streaming over HTTP (DASH) is a
very good candidate that can take advantage of multi-homing to-
wards better QoE [7, 10]. Mobile users can enjoy high-quality video
over Wi-Fi in high-bandwidth Wi-Fi hotstpots, and watch video
contents over LTE whenever LTE base stations can support data
communication even though there are no available Wi-Fi access
points (APs). In a place where both LTE and Wi-Fi are available,
higher quality videos can be supported or more resource efficient
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streaming becomes possible by judicially using both LTE and Wi-Fi
links simultaneously.

Let us consider a video streaming scenario, where user wants
to enjoy content with long playback duration, e.g., a live soccer
game or video on demand (VoD) contents from YouTube or Netflix.
Since the content duration is very long, Wi-Fi may be the desirable
access network for the user. However, the user might be on move
or take public transport while experiencing the content. Such mo-
bility results in extremely fluctuating link throughput or frequently
disconnected Wi-Fi links from the nearby hotspots [6, 17]. This
significantly degrades video quality and causes frequent rebuffering
(also called video stall or freezing), and hence, in this environment,
it is not desirable to watch video over Wi-Fi link.

To tackle this problem, an intelligent video chunk requesting
mechanism should be developed that can utilize the unstable Wi-
Fi links intelligently while guaranteeing the desired video quality
and uninterrupted playback without rebuffering in mobile envi-
ronments. At the same time, battery energy and LTE data quota
are important issues which are desired to be conserved as much as
possible while ensuring satisfying video quality.

Accordingly, a chunk request technique should consider both
enhancing video performances, i.e., video quality and rebuffering,
and saving smartphone resources, i.e., battery energy and LTE data
quota, to optimize QoE of video streaming. Besides, the problem
is more complex in a multi-homing environment compared with a
single link scenario [11], thus making it challenging to develop a
well-designed DASH streaming client, and a solution is still due.

To provide an optimal video performance while satisfying re-
source usage constraints for battery energy and LTE data quota, we
propose REQUEST, a bitRate, Energy, LTE data Quota, and bUffEr-
aware video ST reaming, for DASH video over multi-homed smart-
phones. By utilizing Wi-Fi link as a supplementary link, REQUEST
realizes a seamless DASH video streaming even in the environments
where Wi-Fi link performance is not guaranteed. Also, REQUEST
optimizes time-average video quality while satisfying time-average
resource constraints by adopting Lypunov optimization framework,
and it is easily implemented in commercial smartphones as an
application. We claim the following major contributions:
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• We propose a chunk request policy that achieves seamless play-
back of video using both Wi-Fi and LTE simultaneously even
in situations where Wi-Fi is unstable.
• We formulate a Lyapunov optimization framework-based sto-
chastic optimization problem to maximize time-average video
quality under time-average energy and LTE data usage con-
straints and minimize rebuffering.
• We design REQUEST, an online video chunk request algorithm
by using both LTE and Wi-Fi links, which provides a near-
optimal solution of the Lyapunov optimization problem.
• We implement REQUEST by modifying ExoPlayer, Google’s
open-source DASH player for Android [3], and validate its
performance in real-world scenarios.
The rest of the paper is organized as follows. In Section 2, we

discuss issues arising when utilizing both LTE and Wi-Fi for DASH
video streaming and related work. Section 3 describes motivation
of our work, and our proposed chunk request policy is presented
in Section 4. We formulate the optimization problem in Section 5
and REQUEST algorithm is introduced in Section 6. We evaluate
the performance of REQUEST in Section 7 and conclude the paper
in Section 8.

2 BACKGROUND AND RELATEDWORK
2.1 Background

2.1.1 Multi-homing for DASH. DASH is a bitrate-adaptive stream-
ing technique, which delivers video content over HTTP. Video
content is encoded at a variety of bitrates in video server. A DASH-
enabled video streaming player downloads video chunks of a partic-
ular bitrate based on the experienced bandwidth for downloading
earlier chunks. Initially, the player begins with lower or moder-
ate quality to avoid longer start-up delay. Bandwidth aggregation
in heterogeneous wireless network environment aims to support
higher bitrates of video that cannot be sufficiently delivered by
only one of the available networks [30–33, 35]. Thanks to the de-
velopment of techniques for simultaneous utilization of multiple
network interfaces at mobile devices, especially, as application-level
solutions [2, 4], both Wi-Fi and LTE interfaces can be utilized simul-
taneously to enhance video quality. The higher the video quality,
the higher the energy consumption of smartphones, because the
amount of data to be decoded and downloaded via Wi-Fi or LTE
increases [10, 16]. The energy is also spent by the CPU for process-
ing more packets [16]. Meanwhile, user may not fully utilize LTE
link due to her/his remaining monthly LTE data quota or data plan.
In this case, it is fairly useful to download video data by Wi-Fi as
much as possible to save LTE data quota [9, 17].

By downloading video chunks with both LTE and Wi-Fi, video
player can maintain sufficient chunks in its buffer, thus avoiding
rebuffering. However, chunks remaining in the buffer may cause
possible data waste when user stops watching video in the middle
of playback [11, 18]. Prefetching video data, i.e., requesting more
video chunks in advance, provides several advantages to video
client. The more video chunks to be consecutively requested, the
less energy is spent for networking activities as network inter-
faces are able to stay in idle state for longer periods [11, 13, 18].
In addition, prefetching prevents rebuffering events because video
buffer is filled with sufficiently many video chunks. However, large

amount of prefetching may waste as much energy and LTE data
as the number of chunks remaining in the video buffer when user
stops watching video before the end of the video clip. The ratio
of wasted energy and LTE data by prefetching large amount of
chunks becomes significant, especially when user abandons video
streaming session quite early. Therefore, it is necessary to deter-
mine an optimal prefetching strategy considering the advantages of
prefetching (prevention of rebuffering and energy efficiency) and
disadvantages (waste of energy and LTE data due to user’s leaving)
to enhance QoE of video consumers.

2.1.2 Lyapunov optimization framework. Stochastic optimiza-
tion aims at minimizing a time-average objective function subject
to queue stability when the utility function and queue stability
conditions are in tradeoff relationship. In addition, the stochastic
optimization framework is able to utilize the concept of virtual
queues for time-average constraint representation. In stochastic
optimization formulation, Lyapunov function L(t) is defined as the
sum of squares of backlogs in actual and virtual queues on a slot (in
a slotted system). Lyapunov drift ∆(t) is defined as the difference in
the Lyapunov function per slot time. While pursuing the minimiza-
tion of a time-average objective function, taking the minimum of
the Lyapunov drift leads to the queue stability (i.e., main constraint),
which is referred to as drift-plus-penalty minimization. By taking an
action to greedily minimize the drift-plus-penalty every slot time,
we can achieve a time-average utility deviating by at most O(1/V )
from optimality while satisfying time-average constraints and a
time-average queue backlog bound of O(V ), where V is defined as
a tradeoff factor between utility and queue stability. For further
details about the theory of Lyapunov optimization, the book [21]
can be referred to.
2.2 Related Work
Energy/cellular data quota-aware video streaming: Previous
efforts [11, 19] control a video segment size to be prefetched in
an HTTP-based video streaming service to improve the energy
efficiency. GreenTube [19] aims to minimize an unnecessary ac-
tive period of 3G/4G radios by scheduling each video segment
downloading. eSchedule [11] utilizes crowd-sourced video viewing
statistics and power models for energy efficient scheduling of video
streaming. QAVA [8] manages the tradeoff between cellular data
usage and video quality by predicting video client’s usage behavior.
QAVA automatically selects optimal video quality to enable users
to keep under their data quota while maximizing video quality.
Lee et al. [18] and Hu et al. [12] consider wastage of energy and
cellular data quota incurring when user stops watching video. Both
consider the scenario where video streaming is conducted only via
LTE interface of a smartphone. GreenBag [7] utilizes both LTE and
Wi-Fi links to achieve better quality of service (QoS) and energy
efficiency. Go et al. [10] propose an energy-aware HTTP adaptive
video streaming under a cellular data usage constraint. It considers
simultaneous usage of LTE and Wi-Fi for DASH video streaming
on smartphones. It selects video bitrate and the number of chunks
to request via each network in order to minimize a weighted sum
of video distortion and energy consumption per video chunk.
Optimal bitrate selection of DASH video: Video client selects
a video chunk with an appropriate bitrate according to current
network status [5, 27] or video player’s buffer status [14]. Due to



severe fluctuation of link throughput in mobile environment, it is
difficult for a link throughput-based bitrate adaptation to practically
function, and for this reason, a buffer-based bitrate adaptation has
been studied and practically used by real implementations [14, 29].

3 MOTIVATION
3.1 Wi-Fi Throughput Fluctuation
While a mobile device can utilize both Wi-Fi and LTE networks
simultaneously, the Wi-Fi link may become unstable and its quality
may fluctuate severely especially in a mobile or dense environment.
For example, when a user moves around and goes out of the cover-
age of a Wi-Fi AP connected to the user’s mobile device, the device
cannot utilize Wi-Fi link until it finds an available Wi-Fi AP nearby
and handover to a newWi-Fi AP is successfully completed. It is also
well known that Wi-Fi throughput degradation occurs in mobile
environments due to poor performance of handover operations
in commercial Wi-Fi devices [20, 24, 26]. In addition, if a Wi-Fi
AP operates at 2.4 GHz, the Wi-Fi link quality may severely suffer
from interference caused by other wireless devices operating in
2.4 GHz ISM band, such as Bluetooth, ZigBee, microwave ovens,
and cordless phones [15, 25]. Furthermore, Wi-Fi at 5 GHz suffers
from higher path loss than Wi-Fi at 2.4 GHz, thus increasing the
possibility that mobile user experiences worse Wi-Fi link quality
and goes out of Wi-Fi coverage. In contrast to Wi-Fi, a device may
retain a seamless connection via the LTE network even though
user moves fast, thanks to seamless handover between LTE base
stations.1 Likewise, in mobile and dense environments, Wi-Fi link
may have more unstable quality and sometimes may be unavailable.

However, Wi-Fi can be still utilized for offloading purpose even
in mobile environment [6, 17], and its offloading capability may in-
crease in static environment or when a device associates to an IEEE
802.11ac-compliant Wi-Fi AP that can provide very high through-
put. From this perspective, when a DASH client requests video
chunks via both Wi-Fi and LTE in parallel in a multi-homed de-
vice, Wi-Fi link availability is like a double-edged sword. In other
words, although the Wi-Fi link may enhance the video quality at
low energy cost and reduce LTE data consumption, it can also in-
crease the possibility of rebuffering events, as we cannot predict
the exact bandwidth and availability of Wi-Fi in mobile and dense
environments.

Therefore, it is challenging to design a chunk request policy for
DASH by judicially utilizing Wi-Fi connectivity in addition to LTE
to maximize the merit of utilizing Wi-Fi link while minimizing its
side effects. In this work, we accept the challenge. We opportunisti-
cally request video chunks overWi-Fi, thus reducing the side effects
of unstable Wi-Fi links.
3.2 Optimizing Resource Utilization
Mobile devices consume resources, i.e., battery energy and LTE
data quota, during DASH video streaming over Wi-Fi and LTE
networks. Since battery energy and remaining LTE data quota are
usually limited, users will like to minimize the resource usage for
DASH video streaming as much as possible so as to watch videos
much longer or use the remaining resources for other applications.

1In this paper, it is assumed that seamless handover of LTE links is ensured. Other
cellular links, e.g., 3G/HSDPA, may be applied instead of LTE.

Assuming that a DASH client intelligently requests proper bitrate
video chunks to balance the quality of video and resource usage. In
this case, the video quality might be either increased in exchange
of using more resources or decreased to conserve the resources.
From this perspective, a problem can be formulated as optimizing
video quality for DASH streaming given the constrained amount of
resources in smartphones, i.e., requesting high quality video chunks
with a given amount of battery energy and LTE data quota.

Unfortunately, the traditional optimization frameworks that have
been used in the past studies do not support flexible resource uti-
lization, , e.g., sometimes allowing resource overuse to enhance
video quality. For instance, a popular method to formulate opti-
mization problem is to formulate a multi-attribute cost function
with proper constraints based on a simple additive weighting (SAW)
method. This approach is widely used for multi-attribute decision
making (MADM) algorithms [10, 23, 28]. A challenge to optimize
MADM-based cost function is to select appropriate weights for
the attributes in the cost function to quantitatively balance them.
In addition, even though the weights of the attributes determine
relative priority to provide a trade-off between attributes in a cost
function, it is difficult to force an attribute to have a value within a
certain range.

To overcome the limitation of MADM-based optimization, we
adopt Lyapunov optimization framework to optimize time-average
video quality while satisfying time-average resource constraints at
the same time. By adopting time-average concepts, we occasionally
allow resource overuse but eventually satisfy constraints.

4 PROPOSED CHUNK REQUEST POLICY
Generally, before a DASH client sends a request for a video chunk,
it determines an appropriate bitrate for the chunk according to the
estimated link bandwidth [10] or the playback buffer status [14, 29].
In a multi-homed environment, a DASH client can further down-
load a single chunk in parallel via multiple wireless interfaces by
sending multiple HTTP range requests [1]. A number of proposed
approaches follow this technique [7, 10]. However, considering a
possible situation where Wi-Fi link is disconnected or extremely
unstable during a chunk download, it is not efficient to divide one
video chunk into two parts and receive them by both LTE andWi-Fi
separately. Accordingly, in this work, we use a single network to
request and receive a single video chunk. This eliminates decoding
failures due to partially received chunks, thus avoiding re-buffering
and data wastage.

Therefore, we design our chunk request policy as illustrated in
Fig. 1, where the notations in Fig. 1 are summarized in Table 1.
We call an event of requesting a batch of video chunks a request
event. A request interval T [r ] is defined as the time interval between
the start time and the end time of a request event. At the start
time t[r ] of the r th request event, client determines the bitrate b[r ]
of chunks,2 request interval T [r ], and the numbers of chunks to
request over LTE (Nl [r ]) and Wi-Fi (Nw [r ]) during T [r ]. Ideally, all
the chunks requested during T [r ], i.e., Nl [r ] + Nw [r ] chunks, are
expected to be successfully downloaded within T [r ]. In this case,
t[r + 1] = t[r ] +T [r ], i.e., the end time of the r th request event is
equal to the start time of the (r + 1)th request event.

2All the chunks requested in a request event have the same bitrate.



Table 1: Important notations

Symbol Description
tp A fixed chunk playback time (sec)
Tb Initial buffer-time (sec)
r The index of request event

t [r ] Start time of the r th request event
T [r ] The r th request interval (t [r + 1] − t [r ])
b[r ] Bitrate of chunks to be requested in the r th request event
Nl [r ] Number of chunks to request over LTE in the r th request event
Nw [r ] Number of chunks to request over Wi-Fi in the r th request event
N̂w [r ] Number of chunks actually received over Wi-Fi in the r th request event

Moreover, it is important to determineT [r ] judiciously to ensure
that all the chunks are downloaded before they are played back
for seamless video streaming. Especially, our policy tries to avoid
rebuffering due to Wi-Fi throughput degradation. To enable this
goal, the following features are introduced in our design:
i) We first setT [r ] = tp (N̂w [r − 1]+Nl [r ]), i.e., the playback time

of N̂w [r − 1] chunks received over Wi-Fi in the (r − 1)th request
event and Nl [r ] chunks requested over LTE in the r th request
event. By doing so, the chunks received over Wi-Fi accumulate
in the buffer, which has the same effect as increasing the initial
buffer-time at the start of the next request event. It also prevents
rebuffering due to LTE throughput degradation that cannot be
handled by the initial buffer.

ii) The video chunks requested over Wi-Fi in the r th request event
should be played after Tb from the end time of the r th request
event, where Tb is initial buffer-time.3 For example, if Tb = 2tp ,
N̂w [r ] chunks received over Wi-Fi in the r th request event are
played after t[r ] +T [r ] + 2tp as illustrated in Fig. 1.

iii) If chunks are requested over both LTE and Wi-Fi, the video
chunk requested over Wi-Fi is played right after the last video
chunk requested over LTE in the same request event. In other
words, the first sequence of Nw [r ] chunks is the right next to
the last sequence of Nl [r ].

iv) If client fails to request some chunks over Wi-Fi, those chunks
are prioritized to request in the next request event. For example,
as illustrated in Fig. 1, if two chunks could not be requested in
the r th request event, the client starts requesting the chunks in
order in the (r + 1)th request event for the continuity of video.
Based on these features, we ensure that all chunks of a video

can be eventually received and played even though some chunks
could not be requested over Wi-Fi during a request event. However,
in practice, chunks may not be received within a request interval,
due to throughput degradation of either LTE or Wi-Fi. In this case,
the start of the next request event can be delayed. The details are
discussed in Section 6.1. In addition, to maximize video quality
while satisfying battery energy and LTE data quota constraints, we
should properly determine b, T , Nl , and Nw for each request event.
To achieve this, we formulate a stochastic optimization problem in
the following section.
5 PROBLEM FORMULATION
Even if Wi-Fi and LTE links are sufficient to support the highest
video quality, we cannot request high quality video if the battery
energy and/or LTE data usage is limited. Thus, we have to accurately
determine the bitrate of chunks and the number of requested chunks
3The initial buffer-time is the playback time of video chunks initially received before
video player starts rendering the video.

: th request interval

(Section 6.2)

Time

Time

th request event th request event

Delayed start time of request event (Section 6.1)

Two chunks could 

not be requested

th request event

Figure 1: An example of the proposed chunk request policy.

to maximize video quality while satisfying battery and LTE data
usage constraints during the entire video playback.
Objective: The objective of our optimization problem is to maxi-
mize a time-average video utility. In this work, we define the time-
average utility as a time-average logarithmic function of the video
bitrate. The reason why we maximize the logarithmic function of
bitrate instead of bitrate directly is to reflect the fact that the impact
of increasing video quality on a user experience can be modeled by
a concave function with diminishing returns [29].
Constraints:To guarantee longer battery lifetime and use LTE data
without exceeding budget, we assume that mobile device is allowed
to consume pav (W) and consume LTE data with dav (Mbps) on
average during a video playback.

In order to design optimal chunk request policy for maximiz-
ing the time-average video quality with satisfying time-average
resource constraints, it would require a priori statistical knowledge,
such as the distribution of network bandwidth. It would also need
a complex computational method, such as dynamic programming
(DP) method for finding the optimal solution based on the a pri-
ori statistical knowledge [34]. However, it is practically difficult to
obtain the exact distribution of network bandwidth to solve the
problem with a DP method. Even if the distribution could be ob-
tained, very large state space composed of request time, bitrate,
number of chunks to request via network would have to be con-
structed [22, 29].

In order to overcome this challenge, we apply Lyapunov optimization-
based dynamic algorithm [22] that independently determines the
number of chunks to request and their bitrate at the start of a re-
quest event by observing the chunk reception result of the previous
request event. The performance of Lyapunov-based dynamic algo-
rithm is close to that of the optimal solution by a DP algorithm with
a priori statistical knowledge, but Lyapunov optimization algorithm
does not require any a priori knowledge [22].
Renewal-based Lyapunov optimization:According to the chunk
request policy proposed in Section 4, request interval T [r ] is re-
lated to the number of requested chunks, and hence, it is time-
varying. To reflect this, we adopt renewal-based Lyapunov opti-
mization [21, 22].4 We assume that the video playback time is infi-
nite, i.e., R →∞,5 for an approach similar to that in [29]. Then, the

4A request event in Fig. 1 corresponds to a renewal frame in the renewal-based Lya-
punov optimization.
5R is the index of the last request event for a video.



problem based on Lyapunov optimization framework to maximize
time-average video utility while satisfying time-average energy
and LTE data usage constraints is described as follows:

Maximize log(b)T /T ,

subject to ee ≤ pavT , ed ≤ davT ,
(1)

where log(b)T ,T , ee , and ed are infinite horizon expectations, i.e.,

(log(b)T , T , ee , ed ) = lim
R→∞

1
R

R−1∑
r=0
(log(b[r ])T [r ], T [r ], ee [r ], ed [r ])), (2)

where ee [r ] and ed [r ] are the energy consumption and LTE data us-
age during the r th request event, respectively. Since request interval
is time-varying, we give a time weight to log(b), thus maximizing
log(b)T /T , which denotes the time-average video utility.
Virtual queues for resource constraints:Wedefine virtual queues
to solve our optimization problem based on a drift-plus-penalty
ratio minimization algorithm, which greedily minimizes drift-plus-
penalty ratio to achieve near-optimal time-average video utility
while satisfying time-average resource constraints.

Let us first define a virtual queue for energy consumption Qe [r ].
The arrival and service process of Qe [r ] at the r th request event are
ee [r ] and pavT [r ], respectively. Then, the queue backlog of Qe [r ]
evolves as follows:

Qe [r + 1] = max (Qe [r ] + ee [r ] − pavT [r ], 0). (3)

The same approach can be applied to the LTE data usage virtual
queue Qd [r ] of which backlog evolves as follows:

Qd [r + 1] = max (Qd [r ] + ed [r ] − davT [r ], 0). (4)

Time-average resource constraints of (1) can be satisfied if Qe [r ]
and Qd [r ] are stabilized.6

Drift-plus-penalty ratio: The renewal-based Lyapunov optimiza-
tion framework minimizes drift-plus-penalty ratio which is ob-
tained by normalizing drift-plus-penalty by time [22]. Before defin-
ing the drift-plus-penalty ratio, we first define the Lyapunov func-
tion L[r ]. In addition to Qe and Qd , we consider DASH client’s
video buffer Qr [r ] which denotes the number of video chunks in
video buffer at the r th request event. Then, L[r ] is defined by:

L[r ] =
1
2

(
(Qe [r ])2 + (Qd [r ])

2 +

(
Qmax

2
−Qr [r ]

)2
)
, (5)

where Qmax is defined as the maximum number of chunks stored
in the video buffer. The energy consumption and LTE data usage
queues are desired to be empty to satisfy the time-average con-
straints while the video chunk queue should not be empty to avoid
rebuffering. However, filling the video buffer to Qmax is not desir-
able due to the possibility of queue overflow and waste of resources,
and hence, we use Qmax

2 instead of Qmax when defining L[r ].
Then, the Lyapunov drift ∆[r ], which is desired to be minimized,

is defined as the difference between the Lyapunov function of the
r th request event and that of the (r + 1)th request event.

∆[r ] = L[r + 1] − L[r ]. (6)

Conventional Lyapunov optimization frameworkminimizes penalty.
Since ourworkmaximizes video utility, we define penalty as−log(b)T
6Due to the lack of space, we omit the proof.

Figure 2: REQUEST architecture.

to follow the Lyapunov framework’s concept of penalty minimiza-
tion. Finally, the drift-plus-penalty ratio (DPPr ) is defined as:

DPPr [r ] =
∆[r ] +V · penalty[r ]

T [r ]
=

∆[r ]
T [r ]

−V log(b[r ]), (7)

whereV is a positive constant parameter to allow a tradeoff between
virtual queues’ backlogs and the gap from a theoretical optimal
video utility. By taking an action to greedily minimize the drift-plus-
penalty ratio every request event, we can achieve time-average video
utility maximization deviating by at most O(1/V ) from optimality
while satisfying time-average resource constraint bound of O(V ).

6 REQUEST ALGORITHM
In this section, we introduce REQUEST, an online algorithm to
request video chunks with near-optimal video quality while satis-
fying resource constraints and preventing video rebuffering. The
REQUEST architecture is illustrated as Fig. 2. At the start of every
request event, REQUEST observes current virtual queue backlogs
(Qe [r ] and Qd [r ]), video queue backlog (Qr [r ]), and estimated LTE
and Wi-Fi link throughput (r̃l [r ] and r̃w [r ]). By using these values,
REQUEST determines the four parameters, i.e., video bitrate (b[r ]),
request interval (T [r ]), and the number of chunks to request through
LTE and Wi-Fi (Nl [r ] and Nw [r ]), which minimize the drift-plus-
penalty ratio, DPPr [r ], in (7). Let the four-tuple (Nl [r ], Nw [r ], b[r ],
T [r ]) be the request policy π [r ] for the r th request event.

The main algorithms of REQUEST include request interval adap-
tation and chunk request adaptation. The request interval adaptation
controls request interval according to chunk reception status, and
the chunk request adaptation determines π based on DPPr mini-
mization algorithm.

6.1 Request Interval Adaptation
Delayed start time of request event: If all the chunks requested
in the r th request event are successfully downloaded within T [r ],
t[r + 1] is equal to t[r ] +T [r ]. However, in practice, some chunks
requested via either LTE or Wi-Fi may not be successfully received
on time, i.e., within T [r ], due to severe throughput fluctuation. In
such a case, we should delay the start time of the next request event
for successful chunk receptions. If we request Nl [r ] and Nw [r ]



chunks by LTE and Wi-Fi at the r th request event, respectively, the
delay is allowed until the following conditions are satisfied.
i) We wait until all the chunks requested over LTE (Nl [r ]) are

successfully received.
ii) If a chunk is requested over Wi-Fi before t[r ] +T [r ], we wait

until t[r ] +T [r ] for full reception of the chunk.
Let the number of actually received chunks during the r th request
event by LTE and Wi-Fi be N̂l [r ] and N̂w [r ]. With the above two
conditions, N̂l [r ] = Nl [r ] and N̂w [r ] ≤ Nw [r ]. The reason why we
do not guarantee the reception of all the chunks requested over Wi-
Fi is that we quickly start a new request event and adapt the bitrate
and the number of chunks for the next request event to resolve link
throughput degradation.

If the chunk download of the r th request event is not completed
withinT [r ] and it takes additionalTa [r ] time to finish the remaining
chunk reception, the start time of the (r + 1)th request event t[r + 1]
becomes t[r ] +T [r ] +Ta [r ].
Request interval adaptation: When a delay of Ta occurs, the
delay is compensated by reducing the next request interval byTa . If
N̂w [r − 1] chunks are received over Wi-Fi and the delay ofTa [r − 1]
occurs, T [r ] is reduced by Ta [r − 1] as follows:

T [r ] = tp (N̂w [r − 1] + Nl [r ]) −Ta [r − 1]. (8)

By doing so, we can compensate for the amount of buffer that has
been reduced due to the delay. For example, even though the r th
request event is delayed by Ta [r − 1], we can ensure that there are
N̂w [r ] +Tb/tp chunks in the buffer at t[r + 1] by reducing T [r ] by
Ta [r −1]. Without this adaptation, the delays accumulate and initial
buffer-time may not be guaranteed at the start time of a request
event, thus causing rebuffering. According to our request interval
adaptation, the video buffer backlog evolves as:

Qr [r + 1] = Qr [r ] + (N̂w [r ] + Nl [r ]) − (T [r ] +Ta [r ])/tp . (9)

6.2 Chunk Request Adaptation
Estimated LTE and Wi-Fi throughput: For the r th request
event, the estimated LTE/Wi-Fi throughput, r̃l [r ] and r̃w [r ], are
calculated by using exponential weighted moving average (EWMA).

r̃l [r ] = αr̃l [r − 1] + (1 − α)rl [r − 1], (10)

where rl [r − 1] = Nl [r−1]tpb[r−1]
τl [r−1] , i.e., the average chunk download

speed by LTE during the (r − 1)th request event, and τl [r − 1] is the
total download time for Nl [r − 1] chunks of bitrate b[r − 1] by the
LTE interface. r̃w [r ] is calculated in a similar fashion.
Arrival rate of energy/LTE data virtual queues: In order to
reduce energy and LTE data waste when a user stops watching
video in the early stage of playback, we put the expected energy/LTE
data waste as well as the expected energy/LTE data consumption
in the arrival process of the energy/LTE data virtual queue in the
stage of determining the optimal π [r ]. We define Ēw [r ] and D̄w [r ]
as the expected energy and LTE data waste during the r th request
event, respectively.7

7When updating Qe [r ] and Qd [r ] at t [r ], since the video has been played back
continuously, set Ēw [r − 1] and D̄w [r − 1] to 0, and then update Qe [r ] and Qd [r ].

The arrival rate ee [r ] of energy virtual queue is given as

ee [r ] = ev [r ] + ee,w [r ] + ee,l [r ] + Ēw [r ] ·T [r ]/(t[r ] +T [r ]), (11)

where ev [r ] is the energy consumption for video playback including
CPU and display power, ee,w [r ] and ee,l [r ] are the energy consump-
tion for Wi-Fi and LTE interfaces, respectively. We multiply the
expected waste by T [r ]

t [r ]+T [r ] to reflect the effect of waste amount on
the average power from the beginning of video playback until the
end of the current request event. The expected energy consumption
for network interface ni , where n1 = l and n2 = w for LTE and
Wi-Fi, respectively, is calculated as follows:

ee,ni [r ] = P̃ni [r ]tni ,d [r ] + Pni ,tail ·min
(
(T [r ] − tni ,d [r ]), tni ,tail

)
, (12)

where P̃ni [r ] is the average power for network ni with the expected
throughput r̃ni [r ], and tni ,d [r ]

(
=

tpb[r ]Nni [r ]
r̃ni [r ]

)
is the expected

download time for Nni [r ] chunks of bitrate b[r ] by network ni
with the expected throughput r̃ni [r ]. P̃ni [r ]tni ,d [r ] is the energy
consumption of network interface ni for chunk download and the
remaining term denotes the energy consumption for tail time [16].

Likewise, the arrival rate ed [r ] of LTE data virtual queue is

ed [r ] = tpb[r ]Nl [r ] + D̄w [r ] ·T [r ]/(t[r ] +T [r ]). (13)

For Ēw [r ] and D̄w [r ], we assume that the probability that a user
stops watching video duringT [r ] takes a uniform distribution. Dur-
ing T [r ], the video chunk remaining in the buffer, which are re-
ceived via Wi-Fi in the previous request event, will be played back
for tpQr [r ], and the chunk received by LTE in the current request
event will be played back for the remaining time, i.e.,T [r ]− tpQr [r ].
We adopt the approach in [18] to derive Ew andDw as the following
closed forms.

Ēw [r ] =
1

T [r ]

{
1
2
(tpQr [r ])2ee,w [r − 1] +

(
T [r ] −

1
2
tl,d

)
ee,l [r ]

+

(
T [r ] −

1
2
tw,d

)
ee,w [r ] +

(T [r ] − tpQr [r ])2

2tpNl [r ]
ee,l [r ]

}
.

(14)

D̄w [r ] =
(
1 −

tl,d + tpNl [r ]
2T [r ]

)
ed [r ]. (15)

Chunk request policy determination algorithm: Now,we find
the optimal π [r ] which minimizes DPPr [r ] as follows:

minπ [r ] DPPr [r ],

subject to T [r ] = tp
(
N̂w [r − 1] + Nl [r ]

)
−Ta [r − 1],

tpb[r ]Nl [r ]

T [r ]
≤ r̃l [r ],

tpb[r ]Nw [r ]

T [r ]
≤ r̃w [r ],

Nl [r ],Nw [r ] ∈ {0, 1, 2 · · · ,Qmax },

1 ≤ Nl [r ] + Nw [r ] ≤ Qmax .

(16)

The first constraint of (16) is to follow the chunk request policy
in Section 4. The second constraint is to prevent requesting more
chunks than what the estimated link throughput permits. The third
and fourth constraints represent that the video should be requested
in a unit of chunk. The run time algorithm to obtain the optimal
π [r ] is summarized in Algorithm 1. At the start of a new request
event, updateQe ,Qd , andQr , and estimate r̃l and r̃w (line 5). For all
the possible π [r ] (lines 6–9), check whether π satisfies the second
constraint, and if π is feasible, calculate DPPr (lines 10–11). The π
minimizing DPPr is selected as the optimal request policy (line 13).



Algorithm 1 Optimal chunk request policy determination
Initialize:
1: Qe ← 0, Qd ← 0, Qr ← Tb/tp , and Nw,prev ← 0
During video playback:
2: while Video plays do
3: if New request event starts then
4: Nw,prev ← N̂w , DPPmin ←∞

5: Update Qe , Qd , Qr , Estimate lr̃l and r̃w
6: for Nt ∈ {1, 2, · · · , Qmax } do
7: for Nl ∈ {1, 2, · · · , Nt } do
8: Nw ← Nt − Nl , T ← tp (Nw,prev + Nl ) −Ta
9: for b ∈ {b1, b2, · · · , bm } do
10: if π = {Nl , Nw , T , b } is feasible then
11: Calculate ee , ed , L, ∆, and DPPr
12: if DPPr ≤ DPPmin then
13: DPPmin ← DPPr , π opt ← π
14: Request video chunks according to π opt
15: else
16: Wait for the next start time of request event

7 PERFORMANCE EVALUATION
Comparison scheme: Although many schemes for video stream-
ing have been proposed to improve QoE, there have been few stud-
ies to consider DASH-based video streaming by using both LTE
and Wi-Fi simultaneously. We select the energy-efficient HTTP
adaptive streaming algorithm (EE-HAS) proposed in [10] as a com-
parison scheme. To our best knowledge, EE-HAS is the only scheme
that can be implemented as an application without modifying other
protocol stacks. EE-HAS considers energy consumption and LTE
data usage constraint to determine the optimal bitrate of video
chunks. The major difference between REQUEST and EE-HAS is
that EE-HAS divides each video chunk into two segments, which
are requested over LTE and Wi-Fi in parallel.
Performance metrics: the following metrics are used in this
work.
i) Average video quality: We measure the average video bitrate

during the entire playback time.
ii) Rebuffering: Rebuffering occurs if a video buffer becomes empty

or some chunks have not been successfully received within
the time limit due to abrupt throughput degradation or Wi-Fi
disconnection in the middle of a chunk download.

iii) Amount of energy and LTE data waste: If a user stops watching
a video at time instant t , let the waste of energy and LTE data
at t be Ew (t) and Dw (t), respectively. We analyze the effect
of energy and LTE data waste on overall power and LTE data
usage rate, respectively, by dividing Ew (t) and Dw (t) by t . We
refer to Ew (t)/t and Dw (t)/t as the time-normalized energy
waste and LTE data waste, respectively.

Parameters: In both simulation and measurement, we use α = 0.5
for (10), Qmax = 10, and tp = 4 (s). Video starts after downloading
two initial chunks, i.e., Tb = 8 s . We use V = 1 for REQUEST for
both prototype-based evaluation and simulation. For the measure-
ment, we use 596-second Big-Buck-Bunny video clip8 encoded at
20 bitrates, i.e., {0.045, 0.089, 0.128, 0.177, 0.218, 0.256, 0.323, 0.378,

8http://www-itec.uni-klu.ac.at/ftp/datasets/DASHDataset2014/BigBuckBunny/4sec/.
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Figure 3: Average bitrate, power, LTE data usage rate of RE-
QUEST. The x-label and y-label of each colormap are power
and LTE data constraints, respectively.

0.509, 0.578, 0.783, 1.009, 1.207, 1.474, 2.087, 2.410, 2.944, 3.341, 3.614,
3.936} (Mbps). For the simulation, each trial runs for 600 s, and uses
the same video encoded at 10 bitrates, i.e., {0.23, 0.33, 0.48, 0.69, 0.99,
1.43, 2.06, 2.96, 5.03, 6.00} (Mbps).9

7.1 Prototype-Based Evaluation
We implemented both REQUEST and EE-HAS by modifying the
open-source DASH Android application, ExoPlayer. We use Sam-
sung Galaxy S5 smartphone (SM-G900) which runs on Android
5.0. For both schemes, the same power model of SHV-E120 smart-
phone [16] is used to estimate the energy consumption for chunk
download and video playback. 10 We conduct an experiment in a
lab environment, where average LTE throughput ranges from 10
to 15 Mbps. We set the maximum throughput of Wi-Fi to 10 Mbps
by controlling the QoS option in the setting window of Wi-Fi AP.
In the middle of video playback, we degrade Wi-Fi throughput to
less than 2 Mbps by adding a contending node with saturated UDP
uplink traffic for 180 s.

7.1.1 REQUEST with various resource constraints. We first eval-
uate REQUEST with various power, pav (W), and LTE data, dav
(Mbps), constraints, i.e., {(pav ,dav )|pav ∈ {1.5, 2, 3},dav ∈ {1, 2, 3, 4}}.
Fig. 3 shows the average bitrate, power, and LTE data usage rate
during the entire playback. During the period when there is no
Wi-Fi background traffic from other connected devices, REQUEST
fully utilizes Wi-Fi link to save LTE data usage while satisfying
the power constraint, and hence, the average LTE data usage is
generally less than the LTE data constraint. Obviously, REQUEST
can achieve almost the highest bitrate with the highest power and
LTE data constraints. Besides, with tight resource constraints, RE-
QUEST tends to select lower average bitrate to satisfy the resource
constraints. For all the cases, REQUEST satisfies the constraints.

7.1.2 REQUEST without resource waste consideration. REQUEST
considers the expected energy and LTE data waste when calculat-
ing the arrival rate of energy and LTE data virtual queues using
(3) and (4). To evaluate the resource saving by considering the
expected waste, we implemented another version of REQUEST,
namely REQUEST-WO, which does not consider the expected waste.
Fig. 4 shows the expected waste, i.e., Ew (t) and Dw (t), and normal-
izedwaste, i.e.,Ew (t)/t andDw (t)/t , whenpav=2Wanddav=1Mbps.

9For simulation, we used video encoded with higher bitrate than measurement case
since LTE and Wi-Fi throughput measured in real environments was much higher
than the highest bitrate used in the measurement.
10Our work is independent of power models, i.e., any power model can be used for
this REQUEST algorithm.
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Figure 4: Time-normalized energy and LTE data waste com-
parison for REQUEST and REQUEST-WO.
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Figure 5: Average bitrate, playback smoothness, and re-
buffering time of REQUEST (pav ) and EE-HAS (α ) with vari-
ous pav and α . For all the cases, dav = 1 Mbps.

For EE-HAS, α = 0.3. Since EE-HAS is prefetching aggressively, it
is more wasteful than REQUEST in the early stage of video play-
back. Before the video plays for 50 s, both Ew (t)/t and Dw (t)/t
of REQUEST are smaller than half of those of REQUEST-WO. RE-
QUEST reduces the waste by selecting lower bitrate and smaller
number of chunks to request compared to REQUEST-WO at the
beginning of the video. Since the resource waste is relatively high
compared to the total resource usage if user stops watching video in
a few seconds, REQUEST can save more resources when user quits
video early. REQUEST can be a more resource-saving option, and
enabling REQUEST-WO can be also an alternative if user simply
wants to watch higher video quality with more potential waste.

7.1.3 Comparison study. For comparative evaluation of RE-
QUEST, we run REQUEST and EE-HAS with various pav and α .
Fig. 5 presents the average bitrate and total rebuffering time dur-
ing the entire playback time of the 596-second video. Playback
smoothness (%) is defined as 100·Total playback time

Total playback time + rebuffering time . EE-
HAS with small α increases bitrate but suffers from long total
rebuffering time, i.e., 41.0 s for α = 0.3, and total 59.6 s for α = 0.1
when the background traffic starts to degrade Wi-Fi throughput
abruptly. Even though EE-HAS with large α , which operates more
energy efficiently, does not suffer rebuffering, the average bitrate is
quite low, i.e., below 100 kbps with α = 0.9. However, REQUEST
retains 100% playback smoothness for all the power constraints
with over 1 Mbps average bitrate. In addition, the average bitrates of
EE-HAS with α = 0.4 and REQUEST with pav = 1.5 are similar, i.e.,
over 1.5 Mbps, but EE-HAS shows only 93.6% playback smoothness
(40.5 s rebuffering time) while REQUEST provides seamless play-
back. In summary, in contrast to EE-HAS which provides either too
low bitrate without rebuffering or high bitrate with long rebuffering
time, REQUEST achieves enhanced quality without rebuffering.

Table 2: Bitrate and rebuffering of EE-HAS (α = 0.1) and RE-
QUEST (pav = 2) for five traces.

EE-HAS REQUEST

Trace RT # ER ER # OR OR Bitrate RT Bitrate
(s) time (s) time (s) (Mbps) (s) (Mbps)

1 (office) 4 1 4 0 0 5.27 0 5.17
2 (station) 16.39 3 5.33±1.89 1 0.4 3.03 0.30 5.14
3 (station2) 43.83 3 8±3.27 3 6.61±3.81 2.00 0 2.22
4 (cafe) 12 3 4 0 0 4.06 0 5.17
5 (cafe2) 32.65 3 6.67±1.89 16 0.79±0.16 2.59 0 5.23

7.2 Trace-Driven Simulation
To comparatively evaluate the performance of REQUEST, we im-
plement both REQUEST and EE-HAS using Matlab. For a fair com-
parison, measured LTE and Wi-Fi TCP throughput traces are used.
We first measured the LTE and Wi-Fi TCP throughput using Iperf
with SM-G900 every second in various places, e.g., office, subway
station, and cafeteria. A desktop in a lab is used as a server for Iperf.

We use α = 0.1 for EE-HAS and pav = 2W for REQUEST. dav
is 1.5 Mbps. We classify rebuffering events into two types, i.e., i)
rebuffering due to empty video buffer (empty buffer rebuffering)
and ii) rebuffering due to absence of video chunks to be played now
even though video buffer is filled with video chunks to be played
later (out-of-order rebuffering). The out-of-order rebuffering may
occur especially with EE-HAS, where a chunk may be divided into
two segments that are requested over LTE and Wi-Fi, separately
in parallel. If these segments are not received by the player on
time, a partially received chunk cannot be decoded and played
back, thus causing out-of-order rebuffering. In Table 2, # ER, and
ER time denote the number of empty buffer rebuffering events and
the average buffering time per event. # OR and OR time are those
of the out-of-order rebuffering. RT denotes the total rebuffering
time of REQUEST, and bitrate (Mbps) is the average bitrate during
playback. For all the cases, rebuffering time of REQUEST is almost
zero while EE-HAS suffers from frequent rebuffering events, e.g.,
19 rebuffering events and total 32.65 s rebuffering time for the third
trace. Bitrate of REQUEST is similar to or higher than that of EE-
HAS while REQUEST avoids rebuffering even in mobile and dense
environments where LTE andWi-Fi throughput are often unstable.

8 CONCLUSION
In this paper, we propose REQUEST which utilizes both LTE and
Wi-Fi networks to provide seamless video streaming under resource
constraints. The proposed chunk request policy of REQUEST en-
sures that all the video chunks are received even in unstable net-
work environments. REQUEST achieves near-optimal time-average
video quality while satisfying time-average resource constraints by
adopting Lyapunov optimization framework. Our prototype-based
evaluation and trace-driven simulation demonstrate that REQUEST
provides seamless video streaming by using both LTE and Wi-Fi
links in real-world environments.
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