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ABSTRACT

Transformer-based models recently reached state-of-the-art
single-channel speech separation accuracy; However, their
extreme computational load makes it difficult to deploy
them in resource-constrained mobile or IoT devices. We
thus present Papez, a lightweight and computation-efficient
single-channel speech separation model. Papez is based on
three key techniques. We first replace the inter-chunk Trans-
former with small-sized auditory working memory. Second,
we adaptively prune the input tokens that do not need further
processing. Finally, we reduce the number of parameters
through the recurrent transformer. Our extensive evaluation
shows that Papez achieves the best resource and accuracy
tradeoffs with a large margin. We publicly share our source
code at https://github.com/snuhcs/Papez.

Index Terms— speech separation, auditory working
memory, adaptive computation, transformer, deep learning.

1. INTRODUCTION

Speech separation serves as a preparatory stage for various
downstream applications, e.g., speech recognition, speaker
diarization, and machine translation. While Transformer-
based models have recently achieved state-of-the-art sepa-
ration performance [1, 2, 3], they are severely intensive in
computation and memory, making it difficult to deploy them
in resource-constrained mobile/IoT devices. For example,
SepFormer [1] with 26M parameters costs 2.53 sec for infer-
ence on an 8kHz, 0.5-sec input with Samsung Galaxy S20
CPU; real-time mobile speech processing is thus infeasible.
In this paper, we propose Papez, a resource-efficient
single-channel speech separation model. We design Papez
with a couple of key observations regarding the inefficien-
cies in the state-of-the-art transformer-based models. First,
we find that a widely-used dual-path process approach [1, 4]
incurs unnecessary computational overhead [3]. Dual-path
process alleviates the excessive processing load of elongated
input sequences by chunking the sequence and modeling the
intra-chunk and inter-chunk dependency separately [4, 5].
However, our in-depth analysis finds that only a few trans-
former layers of the inter-chunk transformer are utilized in
effect. Second, prior models employ a fixed processing path
regardless of the input content. Yet, a meaningful portion
of an input signal can be pruned out during the computation
since some segments of a speech mixture are much easier to
separate than others, e.g., silence or single-speaker speech [6].

Leveraging our observations, we develop two key tech-
niques to design Papez: Auditory Working Memory (AWM)
Transformer and Adaptive Token Pruning. First, our AWM
Transformer architecture augments the intra-chunk trans-
former with a small-sized short-term memory to replace the
inter-transformer. In detail, the short-term memory captures
and stores the global context needed for local intra-chunk pro-
cessing. Note that our architecture is bio-inspired; the human
brain has a functionality called AWM that temporarily stores
audio features for auditory processing [7, 8]. Also, studies in
NLP found that global tokens attending the whole sequence
are effective in modeling a very long sequence [9, 10].

Second, our Adaptive Token Pruning technique context-
adaptively prunes redundant input tokens that need no further
processing. In detail, each token self-determines whether to
stop or continue processing itself in every transformer layer
probabilistically. This dynamically scales down the width
(the number of tokens) and depth (layer iteration) of the
transformer computation. Moreover, we optimize the latency
and model size by (i) piggybacking the probability estima-
tor to the feed-forward network (FFN) of the transformer
layer (rather than using a dedicated estimator as in prior
works [11, 12]), and (ii) employing the recurrent transformer
architecture that shares weight across transformer layers.

Our extensive evaluation shows that Papez enables a sig-
nificantly more efficient computation-accuracy tradeoff com-
pared to prior models. Specifically, Papez achieves 3.6,
4.14x smaller parameters and 2.44 x, 1.67x faster inference
latency than Tiny-Sepformer [13] and A-FRCNN [14] with
4.2dB and 1.1dB higher SI-SNR in WSJ0-2Mix dataset, re-
spectively. We also reduce the model size of the state-of-the-
art Sepformer by 17.7x with minimal accuracy drop. Our
techniques are widely applicable on other transformer-based
models (e.g., Sepformer variants [2, 3, 13]) as well.

2. RELATED WORK

Separating each speech source from a single-channel mix-
ture of multiple speakers is a fundamental yet difficult prob-
lem [5]. Initially, frequency-domain approaches separate the
mixture in its time-frequency STFT representation [15].

The success of TasNet [16] has brought great interest in
RNN-based time-domain approaches, which uses the non-
STFT encoder to extract an effectively separable representa-
tion of the waveform. The problem is that encoded sequences
get unbearably long to model with RNNs since a smaller slid-
ing window of encoder led to higher performance [4, 17, 5].
Dual-path process addresses this by chunking the sequence
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Fig. 1: Overall architecture of our Papez model. The iteration
steps of the AWM Transformer layer are determined by our
Adaptive Token Pruning technique.

and modeling intra-chunk and inter-chunk separately [4].

Unfortunately, RNN is limited due to its sequential nature;
its computation cannot parallelize, and it relies on the induc-
tive bias of temporal invariance [1, 18]. Recently, RNN-free
transformer-based models (i.e., Sepformer [1] and its vari-
ants [2, 3]) achieved remarkable performance with three fac-
tors: (i) maximal connectivity of self-attention mechanism
to model long-term dependency, (ii) no inductive bias un-
like CNNss (translation invariance) or RNNs (temporal invari-
ance) [18], and (iii) parallelization of computation [1]. Al-
though these models are faster than RNN-Transformer hybrid
models [5, 17], the dual-path process doubles the time com-
plexity of the Transformer, which is already huge.

A few works focus on reducing the computational load
and model size of speech separation models. ConvTas-
Net [19] replaces LSTM stack of TasNet [16] with a stack of
1-D dilated convolutions. A-FRCNN [14] fuses multi-scale
features processed with CNN. Yet, CNN is not as effec-
tive as Transformer in modeling long-term dependency [20].
Tiny-sepformer [13] cuts down model size with parameter
sharing [21]. However, it suffers from a significant accuracy
drop of 4-5dB SI-SNRi in the WSJ0-2Mix dataset [22].

3. APPROACH

3.1. Architecture Overview

Figure 1 shows the overall model architecture of Papez. We
take the time-domain masking approach [1, 19] composed
of three modules: Encoder, Masking Module, and Decoder.
First, the Encoder extracts a 2D spectrogram-like representa-
tion from the mixture signal. Second, the Masking Module es-
timates the mask over the 2D representation for each speaker.
Finally, the Decoder uses the mask and 2D representation to
reconstruct the clean speech of each speaker.
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Fig. 2: Redundancy of input tokens in the Sepformer’s dual-
path process. The black dashed line indicates the threshold
Py, = 0.9 of adaptively pruning the redundant token.
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Table 1: AWM vs. Inter-Transformer. N: # input tokens,
M: # memory tokens, K: chunk size, H: token size, and .S:
depth ratio of intra- and inter-Transformer. ~ when M < K.

Encoder and Decoder. The encoder is a two-layer downsam-
pling 1D convolutional network, which is a sequence of 1-D
convolution, instance normalization (IN), ReLU, and point-
wise convolution. Similarly, the decoder is a two-layer up-
sampling convolutional network consisting of point-wise con-
volution, IN, ReLU, and 1-D transposed convolution.
Masking Module. An encoded mixture signal transforms
into mask estimates through three stages. First, the Embed-
ding network embeds the 2D signal representation into a se-
quence of tokens. Second, the AWM transformer process the
token sequence. Finally, the Mask Generation network gen-
erates masks for each speaker. Embedding and Mask Gen-
eration networks are both a two-layer fully-connected feed-
forward network with PReLLU activation, and the tanh activa-
tion at the end of the Mask Generation network.

3.2. Auditory Working Memory (AWM) Transformer

We find that the inter-chunk transformer of the dual-path pro-
cess is often redundant : as shown in Figure 2, when we apply
our Adaptive Token Pruning (Section 3.3) to the Sepformer,
most of the inter-transformer’s tokens were quickly pruned
after the first 2,3 layers. Similar observations were found in
[3] as well. However, naively reducing the depth of inter-
transformer does not change the asymptotic self-attention
complexity O(N+/N) for input size N (See Table 1.).

In this light, we propose Auditory Working Memory
(AWM) Transformer, a new transformer architecture aug-
mented with a small-sized short-term memory to replace the
compute-intensive inter-transformer. This is realized by spe-
cial memory tokens distinct from input sequence tokens. In
detail, the memory tokens are concatenated in front of every
sequence chunk to globally attend the input sequence. After
the multi-head attention mechanism, the memory tokens of
each chunk are averaged to aggregate the global information.
Right side of Figure 1 illustrates the detailed mechanism of
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Fig. 3: Operation of Adaptive Token Pruning.
the AWM transformer layer. Note that chunking is only ap-
plied to multi-head attention, reducing the FFN’s latency to
nearly 50% since it halves the number of input tokens.

Our idea is bio-inspired; humans store auditory informa-
tion like timbre, tone, and pitch [23] in a dedicated AWM
for up to a few seconds [7], which is pivotal for auditory dis-
crimination [24]. Also, the auditory cortex is interconnected
with AWM areas (e.g., hippocampus), and the AWM is con-
sistently maintained and retrieved along with auditory pro-
cessing [8]. AWM has two advantages over the dual-path
process. First, the time complexity is linear to input size,
smaller than the transformer-based dual-path process’s super-
linear complexity as shown in Table 1. Second, it is fully
parallelizable with intra-chunk processing.

3.3. Adaptive Token Pruning

In a mixture of speech, some segments are more straight-
forward to separate than others, which can be exploited for
faster processing. For example, silent or non-overlapping
speech segments are much easier to separate than overlapped
speeches, which consist of 80% of audio inputs in a real-
world scenario [6]. Also, mixtures from same-gender speak-
ers are much more difficult to separate than different-gender
case [22]. However, existing speech separation models em-
ploy a fixed processing path regardless of the input content,
incurring unnecessary computation overhead.

Inspired by [11], we prune redundant tokens from the
input sequence with the Adaptive Token Pruning technique.
Specifically, each input token self-determines its redundancy
and adaptively prunes itself (Figure 3). Let an input token
sequence {hz(-o) L | of each input token hl(-o) € RH | its trans-
formation fr : R — R¥ (in our case, a transformer layer),
and a differentiable estimator f, : R¥ — (0,1). The i-th

output token yZ(N) is defined,

B = (B B, ),

k3

P = fp(™),

P_(”> = Pi(nil) +p§n)7 if Pz‘(nil) < P
‘ 1, otherwise

it P < Py,
it P"Y < Py,

it P < by,

) _ Ju& Y 4 pih™,
otherwise

Y, = yzgn—n +(1 _Pi(n—l))hgn)7

where P, € [0, 1] is the halting threshold, P*) = 0, and
N is the maximum f7 iterations. So each sequence token pro-
cesses fr until its halting probability P; reaches the thresh-
old. This enables dynamic scaling of the transformer’s width

and depth, i.e., the number of tokens and the transformer it-
erations, respectively. The estimator f, has sigmoid output
activation, and f, is jointly trained with the transformer fr.
Piggybacked Probability Estimator. Prior works used a
separate single-layer fully-connected network as the prob-
ability estimator f, [11, 12]. However, it incurs additional
latency since it cannot be computed with the fr in parallel.
Instead, we piggyback f,, into the FEN of the transformer and
the embedding module. Hence, the input and output of the
transformer layer become a sequence of pairs of a token and
its halting probability, i.e., {(hgm , pz(-")) L.
Recurrent Transformer and Time-step Encoding. To re-
duce the model size, we employ recurrent transformer [12]
architecture, which iterates a single parameter-shared trans-
former layer instead of stacking it. This reduces the number
of parameters to % compared to the Transformer with depth
N. Opposed to [12] which adds the fixed time-step encoding
vector to the tokens, we make the time-step information learn-
able by embedding it in the trainable affine parameters of the
transformer’s layer normalization. Essentially, it is equivalent
to sharing only the linear layer weights of the transformer.

4. EXPERIMENT

4.1. Experimental Setup

Datasets. We use two datasets for evaluation: (i) WSJO-
Mix [22] and (ii) LibriMix [6] (train-360 for training, and fest
for evaluation). The signal-to-noise ratio (SNR) of mixture is
randomly selected in [-5,5] dB range.

Metrics. We use scale-invariant Signal-to-Noise Ratio im-
provements (SI-SNRi) [16] and Signal-to-Distortion Ratio
improvements (SDRi) [30] for separation accuracy. We re-
port the number of parameters and inference latency on Intel
Xeon Silver 4114 CPU and NVIDIA Titan XP GPU.
Training Details. We set the AWM size as 16, maximum
depth 16, chunk size 150, 8 attention heads, embedding token
size 256 and 1024 hidden nodes of FFN. The Encoder and
Decoder have kernel size 16 and stride 8. The model is trained
for 100 epochs on LibriMix and 200 epochs on WSJO dataset,
with 16-bit mixed precision. Batch size is set to 1. We use
SI-SNR with utterance-level Permutation Invariant loss [31].
We use the AdamW [32] optimizer with 10~ learning rate,
10~* weight decay, and exponential learning rate decay in a
factor of 0.98. Maximum L5 norm of gradient is clipped with
1. We also use Dynamic Mixing (DM) [28] for augmentation.
The entire training takes 220 hours on a Titan RTX GPU.

4.2. Comparison with Prior Works

Table 2 shows that Papez is significantly more efficient than
computation-intensive high-performance baselines [1, 4, 17,
5, 28]. Papez is 2.20 ~ 4.75x and 2.67 ~ 20.95x faster
on GPU, CPU, respectively. The separation accuracy of
Papez is noticeably higher than computation-efficient base-
lines [13, 19, 14]. The SI-SNRi of Papez has increased
1.1 ~ 4.2dB on the WSJO-Mix [22] and 0.6 ~ 5.1dB on
the LibriMix [6]. Interestingly, Papez is even faster than
efficient baselines [13, 14] of 1.67 ~ 2.45x on GPU and



Models Libri2Mix [6] WSJ0-2Mix [22] Params  Latency (5s, 8kHz input)

SISNRi (1) SDRi(T) SISNRi (1) SDRi (1) ™M) CPU (s) GPU (ms)
DPCL [22] 5.9% 6.6% 10.8 11.2 13.6 0.62 111.80
uPIT-LSTM [25] 7.6* 8.2% 9.8 10.0 92.7 0.56 110.44
Chimera++ [26] 6.3% 7.0* 11.5 11.8 329 0.69 152.36
BLSTM-TasNet [16] 7.9% 8.7* 13.2 13.6 23.6 1.68 335.58
Two-step TDCN [27] 12.0* 12.5% 16.1 - 8.6 0.67 156.11
DPRNN [4] 14.1%* 14.6* 18.8 19.0 2.7 4.36 207.76
Sandglasset [5] - - 20.8 21.0 2.3 6.89 155.02
DPT [17] 16.2 16.8 20.2 20.6 2.6 24.73 336.74
Wavesplit [28] 19.5 20.0 21.0 21.2 29.0 9.15 274.87
Sepformer [1] 19.2 194 20.4 20.5 26.0 3.16 168.45
ConvTasNet [19] 12.2 12.7 15.3 15.6 5.6 0.40 34.03
A-FRCNN-16 [14] 16.7 17.2 18.3 18.6 6.1 1.95 124.52
A-FRCNN-16(sum) [14] 16.2 17.2 17.9 18.3 1.7 1.24 118.98
Tiny-Sepformer [13] - - 15.1 16.1 20.0 3.09 173.39
Tiny-Sepformer-S [13] - - 15.2 16.0 53 2.96 173.37

Papez 17.2 17.6 19.2 19.5

Papez + DM 17.3 17.7 194 19.7 1.47 1.18 7088

Table 2: Separation performance and computational efficiency of our Papez model compared with prior works. Latency of
baselines measured from asteroid [29] toolkit with their code [1, 5, 14, 29] and ours [13]. (*) denotes results reported by [14].

Method WSJ0-2Mix Params  Latency
SISNRi(1)  SDRIi(1) M) (ms)

Sepformer 20.4 20.5 26.0 168.31

(1) 4+ Recurrence 17.1 174 2.25 163.67
(2)  + Pruning 17.9 18.1 2.38 95.22
(3) + No Inter-T 15.6 16.1 1.52 82.97
4 + AWM 19.0 19.3 1.52 86.18
(5) 4+ Time Enc. 194 19.7 1.54 86.53
(6) + Piggyback 19.3 19.6 1.47 80.06
K =250 19.3 19.6 1.47 79.94

K =150 19.2 19.5 1.47 70.41

K =100 19.1 19.3 1.47 67.28

K =50 19.0 19.3 1.47 68.34

M =16 19.3 19.6 1.47 80.06
M=28 18.6 18.9 1.47 79.66
M=4 18.3 18.6 1.47 77.42
M=2 18.0 18.4 1.47 76.52

Table 3: Effect of our key techniques and hyperparameters.
No Inter-T setup (3) removes the inter-transformer from (2).
K is chunk size, and M is the number of AWM slots.

1.05 ~ 2.61x on CPU. Note that Tiny-Sepformer [13] fo-
cuses on reducing the model size of the Sepformer [1], and
the latency rather increased. The model size of Papez is the
smallest, which is 17.7x smaller than the Sepformer baseline.
Even if we scale down the transformer depth of the Sepformer
to 3 or 4 with FFN size 2048, Papez is 1.26x, 1.65x faster
with 11.01 %, and 14.59 x smaller model size, respectively.

4.3. Ablation Study

Table 3 shows that our techniques either contributes to effi-
ciency ((1) ~ (3), (6)) or separation accuracy ((2), (4), (5)).

Note that our working memory technique greatly enhances
the accuracy with minimal latency overhead of 3.8% (4).
Also, our adaptive token pruning noticeably cuts down the
latency to 58.1% while boosting the performance (2).

We also investigate the effect of two key hyperparameters:
chunk size and AWM size. Table 3 shows that scaling down
the chunk size notably decreases the latency, yet its impact
on performance is marginal. The reason the latency increases
from K = 100 — 50 is that the latency proportion of the at-
tention mechanism becomes insignificant with a small chunk
size. In contrast, reducing the AWM size greatly diminishes
the performance. This demonstrates that our AWM plays a
pivotal role in speech separation performance.

5. CONCLUSION

We proposed Papez, an efficient and lightweight single-
channel speech separation model. For computational ef-
ficiency, we substituted inter-transformer with small-sized
working memory, and adaptively pruned redundant tokens
from the input sequence. Experimental results on WSJO-
2Mix [22] and Libri2Mix [6] datasets demonstrate that our
model is computationally efficient yet highly performant.
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