
Heimdall: Mobile GPU Coordination Platform
for Augmented Reality Applications

Juheon Yi
johnyi0606@snu.ac.kr

Seoul National University
Seoul, Korea

Youngki Lee
youngkilee@snu.ac.kr

Seoul National University
Seoul, Korea

Abstract
We present Heimdall, a mobile GPU coordination platform for
emerging Augmented Reality (AR) applications. Future AR apps
impose an explored challenging workload: i) concurrent execution
of multiple Deep Neural Networks (DNNs) for physical world and
user behavior analysis, and ii) seamless rendering in presence of the
DNN execution for immersive user experience. Existingmobile deep
learning frameworks, however, fail to support such workload: multi-
DNN GPU contention slows down inference latency (e.g., from
59.93 to 1181 ms), and rendering-DNN GPU contention degrades
frame rate (e.g., from 30 to ≈12 fps). Multi-tasking for desktop
GPUs (e.g., parallelization, preemption) cannot be applied to mobile
GPUs as well due to limited architectural support and memory
bandwidth. To tackle the challenge, we design a Pseudo-Preemption
mechanism which i) breaks down the bulky DNN into smaller
units, and ii) prioritizes and flexibly schedules concurrent GPU
tasks. We prototyped Heimdall over various mobile GPUs (i.e.,
recent Adreno series) and multiple AR app scenarios that involve
combinations of 8 state-of-the-art DNNs. Our extensive evaluation
shows that Heimdall enhances the frame rate from ≈12 to ≈30 fps
while reducing the worst-case DNN inference latency by up to ≈15
times compared to the baseline multi-threading approach.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computer systems organization → Real-time sys-
tem architecture.

Keywords
Mobile Deep Learning, Augmented Reality, Mobile GPUs, Multi-
DNN and Rendering Concurrent Execution

ACM Reference Format:
Juheon Yi and Youngki Lee. 2020. Heimdall: Mobile GPU Coordination Plat-
form for Augmented Reality Applications . In The 26th Annual International
Conference on Mobile Computing and Networking (MobiCom ’20), September
21–25, 2020, London, United Kingdom. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3372224.3419192

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiCom ’20, September 21–25, 2020, London, United Kingdom
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7085-1/20/09. . . $15.00
https://doi.org/10.1145/3372224.3419192

1 Introduction
Augmented Reality (AR) applications (apps) are getting increasing
attention, with the expected market size of $198 billion in 2025 [1].
The life-immersive user experiences accelerate the penetration of
AR apps into various domains including security, commerce, and ed-
ucation (Section 2.1). Also, new forms of AR devices (e.g., Microsoft
HoloLens 2 [2], Magic Leap One [3]) are emerging. Despite the
huge potential, truly immersive AR apps are yet to be developed.

The core challenge lies in the unique workload of AR apps to
seamlessly combine virtual information over the physical world
with resource-constrained AR devices (e.g., wearable and mobile
devices). Specifically, AR apps have the following computational
requirements. First, an AR app needs to accurately analyze the
physical world and user behaviors (e.g., gestures and head move-
ments) to decide which virtual contents to generate and where to
display them. Such analysis often requires a continuous and simul-
taneous execution of multiple Deep Neural Networks (DNNs) on
vision and sensor data streams (see Table 1). Second, the app should
seamlessly synthesize and render virtual contents (e.g., 3D virtual
objects, avatar’s hand gestures) over the analyzed scenes for immer-
sive user experiences. Finally, background DNN computation and
foreground UI rendering should be simultaneously performed in
real-time under resource constraints. In particular, both DNN and
rendering tasks should preferably run on the mobile GPU for low
latency, causing serious contention. Without careful coordination,
rendering and DNN performances degrade significantly even when
the overall workload fits in the capacity of the mobile GPU.

In this paper, we present Heimdall, a mobile GPU coordination
platform to meet the requirements of emerging AR apps. Heimdall
newly designs and implements a Pseudo-Preemptive mobile GPU
coordinator to enable highly flexible coordination among multi-
DNN and rendering tasks. Heimdall is distinguished from prior
work in that i) it coordinates latency-sensitive foreground rendering
tasks along with background DNN tasks to achieve stable rendering
performance of ≈30 fps, and ii) it addresses resource contention
among multiple DNNs to meet their latency requirements.

Designing Heimdall involves the following challenges:
• Multi-DNN GPU Contention. Compared to prior mobile

deep learning frameworks [5–8] that have mostly been designed for
running a single DNN, emerging AR apps require concurrent multi-
DNN execution (Section 2.2). Not only are the individual state-of-
the-art DNNs very complex to run in real-time (Section 3.1), running
multiple DNNs concurrently incurs severe contention over limited
mobile GPU resources, degrading overall performance. For example,
our study shows that running 3 to 4 different DNNs commonly re-
quired in AR apps (e.g., object detection, image segmentation, hand
tracking) concurrently on Google TensorFlow-Lite (TF-Lite) [5] and

https://doi.org/10.1145/3372224.3419192
https://doi.org/10.1145/3372224.3419192

MobiCom ’20, September 21–25, 2020, London, United Kingdom Juheon Yi and Youngki Lee

(a) Criminal chasing. (b) Immersive online shopping. (c) Augmented interactive workspace (source: [4]).

Figure 1: Multi-DNN AR application scenarios.

Xiaomi MACE [6] over high-end Adreno 640 GPU incurs as high
as 19.7× slowdown (Section 3.2). Although several recent studies
aimed at running multiple DNNs concurrently on mobile [9–11],
they have mostly focused on memory optimization [9, 10] or cloud
offloading [11]; multi-DNN GPU contention remains unsolved.
•Rendering-DNNGPU Contention.More importantly, prior

works only consider a DNN running in an isolated environment
where no other task is contending over the GPU. When running
rendering in parallel with DNNs, GPU contention degrades and
fluctuates the frame rate, degrading user experience (e.g., drops
from 30 to 11.99 fps when 4 DNNs run in background (Section 3.3)).

There have been studies to schedule concurrent tasks on desk-
top/server GPUs [12–19], either with parallel execution by dividing
GPU cores (e.g., using NVIDIA Hyper-Q [20]) with hardware ar-
chitectural support, or with time-sharing through preemption (e.g.,
using CUDA stream prioritization). However, mobile GPUs do not
provide architectural support for parallel execution, while fine-
grained preemption is not easy as well due to high context switch
costs caused by large state size and limited memory bandwidth
(Section 4.1.1). Even with architecture evolution, the need for an
app-aware coordinator to dynamically prioritize and allocate re-
sources between multiple DNNs persists (Section 10.1.1). We can
also consider cloud offloading, but it is not trivial to employ it in
outdoor scenarios where network latency is unstable.

To tackle the challenges, we design a Pseudo-Preemption mecha-
nism to support flexible scheduling of concurrent multi-DNN and
rendering tasks on mobile GPU. We take the time-sharing approach
as a baseline, and enable context switches only when a semantic
unit of the DNN or rendering task is complete. This does not incur
additional memory access cost, which is the core difficulty in ap-
plying conventional preemption (triggered by periodic hardware
interrupt regardless of the app context) for mobile GPUs. Accord-
ingly, it allows the multi-DNN and rendering tasks to time-share
the GPU at a fine-grained scale with minimal scheduling overhead.
With this new capability, we flexibly prioritize and run the tasks
on the GPU to meet the latency requirements of the AR app. Our
approach can also be useful for the emerging neural processors (e.g.,
NPUs or TPUs), as preempting hard-wired matrix multiplications
is complicated and context switch overhead can be more costly due
to larger state sizes (Section 10.1.2).

To implement Pseudo-Preemption mechanism, Heimdall incorpo-
rates the following components:
• Preemption-Enabling DNN Analyzer. The key in realizing

Pseudo-Preemption is breaking down the bulky DNNs into small
schedulable units. Our Preemption-Enabling DNN Analyzer mea-
sures the execution times of DNN and rendering tasks on the target

mobile device and partitions the DNNs into the units of scheduling
to enable fine-grained GPU time-sharing with minimal scheduling
overhead. We notice that the execution time of individual DNN
operator (op) is sufficiently small (e.g., <5 ms for 89.8% of ops).
Exploiting this, the analyzer groups several consecutive ops as a
scheduling unit which can fit between the two consecutive ren-
dering events. As rendering latencies are often very small (e.g.,
2.7 ms for rendering a 1080p camera frame), each task is used as the
scheduling unit. Note that existing frameworks run the entire bulky
DNN inference all at once (e.g., Interpreter.Run() in TF-Lite [21],
MaceEngine.Run() in MACE [6]), limiting multi-DNN and render-
ing tasks to share the mobile GPU at a very coarse-grained scale.
• Pseudo-Preemptive GPU Coordinator. We design a GPU

coordinator that schedules the DNN and rendering tasks on GPU
and CPU. It can employ various scheduling policies based on mul-
tiple factors: profiled latencies, scene variations, and app/user-
specified latency requirements. As the base scheduling policy, the
coordinator assigns the top priority to the rendering tasks and exe-
cutes them at the target frame rate (e.g., 30 fps) to guarantee the
usability of the app. Between the rendering events, the coordinator
decides the priority between multiple DNNs and determine which
chunk of DNN ops (grouped by the analyzer) to run on the GPU. It
also decides whether to offload some DNNs to the CPU in case there
is a high level of contention on the GPU. Note that existing frame-
works provide no means to prioritize a certain task over others,
making it difficult to guarantee performance under contention.

Our major contributions are summarized as follows:
• To our knowledge, this is the first mobile GPU coordination
platform for emerging AR apps that require concurrent multi-
DNN and rendering execution. We believe our platform can be
an important cornerstone to support many emerging AR apps.
• We design a Pseudo-Preemption mechanism to overcome the lim-
itations of mobile GPUs for supporting concurrency. With the
mechanism, Heimdall enhances the frame rate from ≈12 to ≈30
fps while reducing the worst-case DNN inference latency by up
to ≈15 times compared to the baseline multi-threading method.
• We implement Heimdall on MACE [6], an OpenCL-based mobile
deep learning framework, and conduct an extensive evaluation
with 8 state-of-the-art DNNs (see Table2) and various mobile
GPUs (i.e., recent Adreno series) to verify the effectiveness.

2 Applications and Requirements
2.1 Application Scenarios
Criminal Chasing (Figure 1(a)). A police officer chasing a crim-
inal in a crowded space (e.g., shopping mall) sweeps the mobile

Heimdall: Mobile GPU Coordination Platform
for Augmented Reality Applications MobiCom ’20, September 21–25, 2020, London, United Kingdom

Table 1: DNN and rendering requirements for the example AR app scenarios.

Criminal chasing Immersive online
shopping

Augmented interactive
workspace AR emoji Surroundings monitoring

Continuously
executed
DNNs (fps)

- Face detection [22]
- Face recognition [23]

(< 1s per scene)

- Image segmentation [24]
(1-5 fps)

- Object detection [25]
(1-5 fps)

- Hand tracking [26]
(1-10 fps)

- Text detection [27]
(1-5 fps)

- Hand tracking [26]
(1-10 fps)

- Face detection [22]
(1-10 fps)

- Image segmentation [24]
(1-10 fps)

- Face detection [22]
(1-10 fps)

- Object detection [25]
(1-10 fps)

Event-driven DNNs
(response time)

- Image style transfer [28]
(< 0.1s)

- Image style transfer [28]
(< 0.1s)

- Pose estimation [29]
(< 0.1s)

Rendering
(resolution, fps)

- Camera frames
(1080p, 30 fps)1

- Bounding boxes
- Couch (1440p, 60 fps)2

- Virtual documents
(1440p, 60 fps)2

- Handwriting updates

- Camera frames
(1080p, 30 fps)1

- Emoji/character mask

- Camera frames
(1080p, 30 fps)1

- Bounding boxes
- Human body joints

1,2 Microsoft HoloLens 2 [2] can record 1080p videos at 30 fps, and display 1440p resolution at 60 Hz at maximum.

Table 2: DNNs for the above AR apps. Inference time is mea-
sured on MACE over LG V50 (Adreno 640 GPU).

Task Model Input size
CPU/GPU

ops
Inference
time

Object
detection YOLO-v2 [25] 416×416×3 0/33 95 ms
Face

detection RetinaFace [22] 1,920×1,080×3 6/129 230 ms
Face

recognition ArcFace [23] 112×112×3 0/106 149 ms
Image

segmentation DeepLab-v3 [24] 513×513×3 0/101 207 ms
Image style
transfer StyleTransfer [28] 640×480×3 14/106 60 ms
Pose

estimation CPM [29] 192×192×3 0/187 14 ms
Hand

tracking PoseNet [26] 192×192×3 0/74 256 ms
Text

detection EAST [27] 384×384×3 8/117 214 ms

device to take a video of the area from distance. The mobile device
processes the video stream to detect faces and find the matching one
with the criminal. Specifically, it continuously runs face detection
per scene and face recognition per each detected face. Detection
results are seamlessly overlayed on top of the camera frames and
rendered on screen to narrow down a specific area to search.
Immersive Online Shopping (Figure 1(b)). An online shopper
wearing AR glasses positions a virtual couch in his room to see if
the couch matches well before buying it. The AR glasses analyze the
room by detecting its layout and furniture, and renders the couch
in a suitable position. The user can also change the style of the
couch (e.g., color, texture), as well as adjust the arrangement with
his hand movements. This app requires i) running object detection
and image segmentation simultaneously to analyze the room, ii)
running hand tracking and image style transfer to recognize user’s
handmovements and adjust the style of the couch, and iii) rendering
the virtual couch on the right spot seamlessly.
Augmented InteractiveWorkspace (Figure 1(c)).A studentwear-
ing AR glasses creates an interactive workspace by combining the
physical textbooks and virtual documents. When he encounters a
concept he does not understand, he commands the AR glasses to

search for related documents on the web via hand gestures. The
searched documents are augmented near the textbooks. Also, the
note he makes on the textbooks is recognized and saved as a digital
file in his device for future edits. This app runs hand tracking and
text detection, while seamlessly rendering the virtual documents.
OtherMulti-DNNARApps include AR emoji [30] (face detection
+ segmentation + style transfer) or surroundings monitoring for
visual support [9] (object and face detection + pose estimation).

2.2 Workload Characterization
Real-time, Concurrent Multi-DNN Execution. The core of AR
apps is accurately analyzing the physical world and user behavior
to combine the virtual contents, which requires running multiple
DNNs concurrently (see Table 1 and 2 for examples). Also, such anal-
ysis needs to be continuously performed over a stream of images
to seamlessly generate and overlay the virtual contents, especially
in fast-changing scenes (e.g., criminal chasing). Moreover, DNNs
need to run over high-resolution inputs for accurate analysis (e.g.,
recognizing small hand-writings or distant faces requires over 720p
or 1080p frames [11, 27]). These characteristics are clearly distin-
guished from prior works [7–9, 31] that have mostly considered
running a single DNN over simple scenes with a few main objects
that can be analyzed with smaller resolution (e.g., 300×300).
Seamless Rendering on Top of Concurrent DNN Execution.
AR apps need to seamlessly augment the virtual contents over the
analyzed scenes for immersive user experiences. Such foreground
rendering should be continuously performed in real-time in pres-
ence of the multi-DNN execution, causing serious contention on
resource-constrained mobile GPUs.
Summary. Concurrent execution of multi-DNN and rendering ne-
cessitates a platform to prioritize and coordinate their execution on
the mobile GPU. Careful coordination will become more important
if an app requires audio tasks (e.g., voice command recognition,
spatial audio generation) along with the vision tasks, or higher
frame rate for more immersive user experience.

3 Preliminary Studies
We conduct a few motivational studies to analyze the limitations of
existing frameworks in handling the emerging AR app workload.

MobiCom ’20, September 21–25, 2020, London, United Kingdom Juheon Yi and Youngki Lee

Table 3: Complexity comparison between state-of-the-art
DNNs and their backbones.

State-of-the-art DNN Backbone (input size scaled)

Input size Model FLOPs Model FLOPs

1,920×1,080 RetinaFace [22] 9.54 G MobileNet-v1-0.25 [32] 1.65 G

112×112 ArcFace [23] 10.13 G ResNet [33] 0.95 G

513×513 DeepLab-v3 [24] 16.48 G MobileNet-v2 [34] 1.54 G

 0
 400
 800

 1200
 1600
 2000

Separate
execution

Concurrent
(2	DNNs)

Concurrent
(3	DNNs)

Concurrent
(4	DNNs)In

fe
re

n
c
e
 t

im
e
 (

m
s
)

StyleTransfer
YOLO-v2

DeepLab-v3
PoseNet

(a) MACE over LG V50 (immersive online shopping scenario).

 0

 200

 400

 600

Separate
execution

Concurrent
executionIn

fe
re

n
c
e
 t

im
e
 (

m
s
)

RetinaFace(270p)
FSRNet

ArcFace

(b) TF-Lite over Google Pixel 3 XL (criminal chasing scenario).

Figure 2: Multi-DNN GPU contention.

3.1 Complexity of the State-of-the-art DNNs
One might think that multi-DNN execution on mobile devices is
becoming less challenging due to the emergence of lightweight
model architectures (e.g., MobileNet [32, 34]) and the increasing
computing power of mobile GPUs. However, the challenge still
exists. The main reason is that state-of-the-art DNNs do not employ
the lightweight models directly, but enhance them with complex
task-specific architectures to achieve higher accuracy.

Table 3 compares the complexity of state-of-the-art DNNs with
their backbones in terms of floating-point operations (FLOPs) re-
quired for a single inference. The reported values are either from the
original paper if available, or profiledwith TensorFlow.Profiler.Profile()
function. Overall, state-of-the-art DNNs require 5.76-10.75× FLOPs
than their backbones, showing that the lightweight backbone is
only a small part of the whole model. For instance, RetinaFace [22]
detector employs feature pyramid [35] on top of MobileNet-v1 [32]
to accurately detect tiny faces, whereas ArcFace [23] recognizer
adds batch normalization layers on ResNet [33] and replaces 1×1
kernel to 3×3 for higher accuracy. Similar holds for DeepLab-v3 [24]
(segmentation model), which adds multiple branches to the back-
boneMobileNet-v2 [34] to analyze the input image in various scales.

3.2 Multi-DNN GPU Contention
Existing mobile deep learning frameworks [5–8] are mostly de-
signed to run only a single DNN. The only way to run multi-
ple DNNs concurrently is to launch multiple inference engine in-
stances (e.g., TF-Lite’s Interpreter, MACE’s MaceEngine) on sep-
arate threads. However, multiple DNNs competing over limited

Algorithm 1 OpenCL-based DNN inference in MACE
1: for Operator in Graph do
2: TarдetDevice ← Operator .GetTarдetDevice()
3: if TarдetDevice == GPU then
4: Kernel ← Operator .GetKernel ()
5: clCommandQueue .enqueueNDRanдeKernel (Kernel)
6: if TarдetDevice == CPU then
7: clCommandQueue .f inish()
8: Operator .RunOnCPU ()

CPU 1

CPU 2

CPU 3

GPU

CPU
fallback

DNN 1 DNN 2 DNN 3

DNN1
finished

DNN3
finished

DNN2
finished

Time

Figure 3: Multi-DNN GPU contention example.

mobile GPU resources incur severe contention, unexpectedly de-
grading the overall latency. More importantly, uncoordinated execu-
tion of multiple DNNs makes it difficult to guarantee performance
for mission-critical tasks with stringent latency constraints.

3.2.1 Measurement on Existing Frameworks
To evaluate the impact of multi-DNN GPU contention on latency,
we run 4 DNNs in the immersive online shopping scenario in Table 2
on MACE over LG V50. Figure 2(a) shows that with more number
of DNNs contending over the mobile GPU, the inference times
increase significantly compared to when only a single DNN is
running (denoted as Separate execution). More importantly, note
that the individual DNN inference times are sufficient to satisfy
the app requirements (i.e., the sum of the inference times of 4
the DNNs are 560.02 ms, indicating that they can run at ≈2 fps
when coordinated perfectly). However, the uncoordinated execution
makes the performance of individual DNNs highly unstable (e.g., the
latency of StyleTransfer increases from 59.93±3.68 to 1181±668 ms
when 4 DNNs run concurrently), making it challenging to satisfy
the latency requirement. We observe a similar trend in TF-Lite:
Figure 2(b) shows that running 3 DNNs in the person identification
pipeline developed in [11] incurs significant latency overhead.

3.2.2 Analysis
Algorithm 1 shows theOpenCL-basedDNN inference flow inMACE.1
Upon the inference start, the framework executes a series of opera-
tors (ops) constituting the DNN. Per each op, the framework first
identifies if it is executed on GPU or CPU (lines 1–2). A GPU op
is executed by enqueueing its kernel to the command queue to be
executed by the GPU driver (lines 3–5). As enqueueNDRangeKer-
nel() function is an asynchronous call, consecutive GPU ops are
enqueued in short intervals (few µs) and executed in batches by
the driver to enhance GPU utilization. However, when a CPU op is
encountered, it can be executed only after the previously enqueued

1The logic is implemented in SerialNet.Run() function, while TF-Lite is implemented
similarly using OpenGL/OpenCL.

Heimdall: Mobile GPU Coordination Platform
for Augmented Reality Applications MobiCom ’20, September 21–25, 2020, London, United Kingdom

 0

 10

 20

 30

F
ra

m
e

 R
a
te

 (
fp

s
) Camera only

1 DNN
2 DNNs

3 DNNs
4 DNNs

(a) Average frame rate.

 0
 5

 10
 15
 20
 25
 30

 0 2 4 6 8 10

F
ra

m
e
 r

a
te

 (
fp

s
)

Time (s)

Camera only
2 DNNs

3 DNNs
4 DNNs

(b) Frame rate over time.

Figure 4: Rendering-DNNGPU contention onMACE over LG
V50 (immersive online shopping scenario).

 0

 10

 20

 30

F
ra

m
e

 R
a
te

 (
fp

s
) Camera only

TinyFace(360p)
TinyFace(1080p)
TinyFace(1080p)+ArcFace

(a) Average frame rate.

 0
 5

 10
 15
 20
 25
 30

 0 2 4 6 8 10

F
ra

m
e
 r

a
te

 (
fp

s
)

Time (s)

TinyFace(720p)
Average frame rate

(b) Frame rate over time.

Figure 5: Rendering-DNN GPU contention on TF-Lite over
Google Pixel 3 XL (criminal chasing scenario).

GPU ops are finished and the result is available to the CPU via
CPU/GPU synchronization (lines 6–8).

Figure 3 illustrates an example 3-DNN GPU contention scenario
that can occur in the above inference process. Each thread on differ-
ent CPU cores first runs the input preprocessing and enqueues the
DNN inference to the GPU. At this step the first contention occurs;
DNN#1 and #3 cannot access the GPU until the already running
DNN#2 is finished. After DNN#2 finishes, DNN#1 takes control
over the GPU and runs its inference. However, let’s assume that
some ops in DNN#1 are not supported by the GPU backend of the
framework and needs to be executed on the CPU (Table 2 shows
how frequently this occurs for different DNNs; more details are in
Section 7.2). In such a case, DNN#1 encounters another contention:
even when the CPU op execution is finished, it cannot access the
GPU until the already running DNN#3 finishes. As a result, the
inference latency of DNN#1 is significantly delayed.

The above contention becomes more severe with more number
of DNNs concurrently running. Furthermore, DNNs with more CPU
fallback ops suffer more from contention, as they lose access over
the GPU at every CPU op execution. For example, in Figure 2(a),
StyleTransfer [28] containing 14 CPU ops suffers the most latency
overhead compared to other DNNs that contain no CPU ops.

3.3 Rendering-DNN GPU Contention
More importantly, existing frameworks only consider a single DNN
running in an isolated environment (i.e., no other task contending
over the mobile GPU), and are ill-suited for AR apps that require
concurrent execution of rendering in presence of multiple DNNs.
Figure 4 shows the 1080p camera frame rendering rate in presence
of multiple DNNs, with the same DNN setting as in Figure 2. Fig-
ure 4(a) shows that when multiple DNNs are running, rendering
frame rate drops significantly due to the similar contention in Fig-
ure 3, becoming as low as 11.99 fps when all 4 DNNs are running.
To make matters worse, GPU contention incurs frame rate heavily
fluctuating over time as shown in Figure 4(b), significantly degrad-
ing perceived rendering quality to users. We observe a similar trend
on TF-Lite when running TinyFace [36] detector and ArcFace [23]
recognizer concurrently with the rendering task (Figure 5).

3.4 Summary
Theworkload of upcomingAR apps is unique in that it runsmultiple
compute-intensive DNNs simultaneously while seamlessly render-
ing the virtual contents. However, existing mobile deep learning
frameworks lack support for multi-DNN and rendering concurrent
execution, and severe GPU contention incurs significant perfor-
mance degradation for both DNN and rendering tasks.

4 Heimdall System Overview
4.1 Approach
The core challenge in supporting concurrency on mobile GPU lies
in the lack of support for parallelization or preemption. As analyzed
in Section 3, mobile GPU can run only a single task at a given time,
making it hard to provide stable performance when multiple tasks
are running. Existing mobile deep learning frameworks, however,
fail to consider such limitations, and are ill-suited for AR workloads
in two aspects: i) they run the entire bulky DNN inference all at
once (e.g., by Interpreter.Run() in TF-Lite, MaceEngine.Run() in
MACE), limiting multi-DNN and rendering tasks to share the GPU
at a very coarse-grained scale (Table 2), and ii) they provide no
means to prioritize a certain task over others, making it challenging
to guarantee performance under contention.

4.1.1 Why Not Apply Desktop GPU Scheduling?

One possible approach is to implement parallelization or preemp-
tion in mobile GPUs. Although there have beenmany studies to sup-
port multitask scheduling on desktop/server-grade GPUs [12–17],
they are either designed for CUDA-enabled NVIDIA GPUs (which
are unsupported in mobile devices) or require hardware modifi-
cations (e.g., memory hierarchy [37]), making it difficult to apply
for commodity mobile GPUs. Also, adopting similar ideas is not
straightforward due to the following limitations of mobile GPUs.
Limited Architecture Support. Several studies focused on spa-
tially sharing the GPU to run multiple kernels in parallel, either by
partitioning the computing resources [15, 17] (e.g., starting from
Kepler architecture [38] released in 2012, NVIDIA GPUs can be par-
allelized in units of Streaming Multiprocessors using Hyper-Q [20])
or fusing parallelizable kernels with compiler techniques [16, 39].
However, such techniques are unsupported in mobile GPUs archi-
tecturally at the moment.
LimitedMemoryBandwidth.Other studies aimed at time-sharing
the GPU by fine-grained context switching [12–14], as well as en-
abling high-priority tasks to preempt the GPU even when others
are running [17] (e.g., by using CUDA stream prioritization). How-
ever, frequent context switching incurs high memory overhead
due to large state size, which is burdensome for mobile GPUs with
limited memory bandwidth. For example, ARM Mali-G76 GPU in
Samsung Galaxy S10 (Exynos 9820) has 26.82 GB/s memory band-
width shared with the CPU, which is 23× smaller than that of
NVIDIA RTX 2080Ti (i.e., 616 GB/s). Each context switch requires
120 MB memory transfer (=20 cores×24 execution lanes/core×64
registers/lane×32 bits), which incurs at least 4.36 ms latency even

MobiCom ’20, September 21–25, 2020, London, United Kingdom Juheon Yi and Youngki Lee

when assuming the GPU fully utilizes the shared memory band-
width. While recent Qualcomm GPUs (Adreno 630 and above) sup-
port preemption [40] (which can be utilized by setting different
context priorities in OpenCL), we observed that each context switch
(both between rendering–DNN andDNN–DNN) incurs 2–3ms over-
head on LG V50 with Adreno 640 GPU, aside from the fact that the
priority scheduling is possible only at a coarse-grained scale (i.e.,
low, medium, and high). Such memory overhead would be burden-
some in the multi-DNN and rendering AR workload, where context
switch should occur at a 30 fps (or higher) scale.

4.1.2 Our Approach: Pseudo-Preemption
To tackle the challenges, we design a Pseudo-Preemptionmechanism
to coordinate multi-DNN and rendering tasks. As parallelization is
unsupported in mobile GPUs, we take the time-sharing approach
as a baseline. To mimic the effect of preemption while avoiding
the burdensome context switch memory overhead, we divide the
DNN and rendering tasks into smaller chunks (i.e., scheduling units)
and switch between them only when each task chunk is finished,
enabling multi-DNN and rendering tasks to time-share the GPU at
a fine-grained scale. A possible downside of our approach is that
fragmenting the GPU tasks may incur latency overhead, as the
GPU driver would lose the chance to batch more tasks to enhance
GPU utilization. However, such overhead can be minimized as we
can flexibly adjust the scheduling unit size to balance time-sharing
granularity and latency overhead (e.g., 89.8% of the DNN ops run
within 5 ms, and rendering latencies are typically small).

4.2 Design Considerations
Commodity Mobile Device Support. Our goal is to support a
wide range of commodity mobile devices by requiring no modi-
fication to existing hardware or GPU drivers. We focus on using
mobile GPU and CPU in this work, and plan to add NPU/TPU sup-
port when the hardware and APIs are more widely supported. We
also leave cloud/edge offloading out of our scope, as it introduces
latency issues in outdoor mobile scenarios.
Guarantee Stable Rendering Performance. Our main goal is
to enable seamless rendering even in the presence of multi-DNN
execution. We aim to minimize the frame rate drop and fluctuation
due to GPU contention, which harms the user experience.
Coordinate Multi-DNN Execution. While guaranteeing seam-
less rendering, we aim to coordinate multiple DNNs to satisfy the
app requirements with minimal inference latency overhead.
No Loss of Model Accuracy.Our goal is to incur no accuracy loss
for each DNN inference. We leave runtime model adaptation for
latency-accuracy tradeoff (e.g., via pruning [10]) to future work.
Transparency. Finally, we aim to design a system that minimizes
the extra efforts required for the app developers to use our platform.

4.3 System Architecture
Figure 6 depicts the overall architecture of Heimdall. Given the
app profile (rendering frame rate and resolution, DNNs to run
and latency constraints), Preemption-Enabling DNN Analyzer first
profiles the information necessary to determine the scheduling units
to enable the Pseudo-Preemption mechanism. First, it profiles the

Application Profile
Rendering

requirements
DNN

requirements
Main Thread

Camera
Manager

UI
Manager

Display
Manager

Task Thread Pool
Rendering DNN #1 DNN #N…

DNN Partitioning
Latency Profiling

GPU Coordination CPU Offloading

Pseudo-Preemptive
GPU Coordinator

Preemption
-Enabling

DNN Analyzer

Processors
GPU Multi-Core CPU

Figure 6: System Architecture of Heimdall.

rendering and DNN inference latencies on the target AR device to
determine how much time the DNNs can occupy the GPU between
the rendering events (Section 5.2). Second, it partitions the DNNs
into chunks (scheduling unit) that can fit between the rendering
events with minimal inference latency overhead (Section 5.3).

At runtime, Pseudo-Preemptive GPU Coordinator takes multi-
DNN and rendering tasks from the main thread (that controls the
camera, UI, and display), and coordinates their execution to satisfy
the app requirements. Specifically, it first defines a utility function
to compare which DNN is more important to run at a given time
based on the inference latency and scene contents (Section 6.2), and
coordinates their execution on GPU, as well as dynamically offload
some DNNs to the CPU to reduce the GPU contention (Section 6.3).

5 Preemption-Enabling DNN Analyzer
5.1 Overview
What ShouldWeAnalyze? The goals of the analyzer are i) profile
rendering and DNN inference latencies on the target device (which
varies depending on the mobile SoC and GPU) to let the coordinator
get a grasp on how it can dynamically schedule their execution,
and ii) partition the bulky DNNs into chunks (i.e., the units of
scheduling), to enable fine-grainedGPU coordination and guarantee
rendering performance.
Static Profiling vs. Dynamic Profiling? The app requires to run
multi-DNN, rendering, and other tasks (e.g., pre/postprocessing for
the DNN inference, camera) simultaneously, which may fluctuate
the execution times of each task at runtime. However, as mobile
GPUs do not support preemption (i.e., a task cannot be interrupted
once started), the execution times on GPU remain stable regardless
of the presence of other tasks. Thus, offline profiling and DNN parti-
tioning approach is feasible for GPU. However, the execution times
of DNNs on CPUs may fluctuate due to resource contention; Fig-
ure 9 shows that the inference times on CPU increase and fluctuate
when the camera is running in background. Thus, CPU execution
times need to be continuously tracked at runtime.
How Fine Should We Partition the DNNs? Inference times of
DNNs typically exceed multiple rendering intervals as shown in
Table 2. At the op-level, however, the execution times remain small
enough, making fine-grained partitioning feasible to fit in between
the rendering events. For example, for the 7 DNNs in Table 2 whose

Heimdall: Mobile GPU Coordination Platform
for Augmented Reality Applications MobiCom ’20, September 21–25, 2020, London, United Kingdom

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Latency (ms)

YOLO-v2
RetinaFace
ArcFace
DeepLab-v3
Style
EAST
PoseNet

Figure 7: Operator-level la-
tency distribution.

 0

 5

 10

 15

720p 1080p 2160pR
e
n

d
e
ri

n
g

 l
a
te

n
c
y
 (

m
s
)

lock()
memcpy()
unlockAndPost()

Figure 8: Camera frame ren-
dering latency.

inference latencies are over 33 ms, Figure 7 shows that on average
89.8% of the ops run within 5 ms on Google Pixel 3 XL. Therefore,
it suffices to partition the DNNs at the op-level and not below (e.g.,
convolution filter-level). However, note that dividing the DNN too
finely also has its downside: it incurs higher latency overhead as
the GPU driver loses the chance to batch more consecutive ops to
enhance GPU utilization.

5.2 Latency Profiling
Rendering Latency. Given the target rendering frame rate (f)
and resolution, the analyzer first measures the rendering latency,
Tr ender . This determines how much time the DNNs can occupy
the GPU between rendering events (i.e., 1

f −Tr ender). For example,
rendering 1080p frames on Adreno 640 GPU in LG V50 takes 2.7 ms
(Figure 8), leaving 30.6 ms for DNNs when the frame rate is 30 fps.
DNNLatency. Secondly, the analyzer measures the DNN inference
latencies on the target GPU and CPU. Figure 10 shows an example
of the profiled results on different processors (i.e., the GPU and
CPU cores in the ARM big.LITTLE architecture) in LG V50.2 The
analyzer also measures the inference latencies of DNNs running on
CPU at runtime to track variations due to CPU resource contention.

5.3 DNN Partitioning
Basic Operation. Figure 12 shows the operation of DNN parti-
tioning. Given a DNN D composed of N ops, let T (Di , j) denote
the execution time of a subgraph from i-th to j-th op. Our goal is
to determine a set of K indices {p1 = 1,p2,p3, ...,pK = N } that
partition the DNN in a way such that each partition execution time
lies within the rendering interval,

T (Dpi ,pi+1) ≤
1
f
−Tr ender 1 ≤ i ≤ K − 1. (1)

Although there are multiple solutions that satisfy the constraints,
dividing the model too finely (e.g., running only one or two ops
at a time) incurs higher scheduling overhead, as the GPU driver
loses the chance to batch more consecutive ops to enhance GPU
utilization: Figure 11 shows that executing only a single op at a time
incurs 13 to 70% latency overhead compared to running the entire
model at once. Thus, the analyzer minimizes K by grouping as
many consecutive ops as possible without exceeding the rendering
interval. This is done as follows: i) starting from the first op of the
model, incrementally increase the op index i until the latency of
executing op 1 to i exceeds the rendering interval, ii) group op 1
to i − 1 as the first partition, and iii) start from op i and repeat the
process until reaching the final op.
Relaxation. The main drawback of our approach is that unde-
sirable GPU idle time occurs when a partition execution time is
2We currently assume that each DNN uses only a single CPU core, and leave multi-core
CPU execution to future work.

shorter than the rendering interval (especially at the end of the
model where there are not enough ops left). To alleviate the issue,
we relax the constraint in Equation (1) and allow the partition exe-
cution time to exceed the rendering interval by a small margin (e.g.,
5 ms), so that more ops can be packed to maximize GPU utilization.

6 Pseudo-Preemptive GPU Coordinator
6.1 Overview
Where Does the Coordinator Operate? The coordinator should
take into account the rendering and DNN requirements of the app,
and coordinate their execution (in the units of scheduling deter-
mined by the analyzer) considering the task priorities. With this
requirement, we embed the coordinator in app-level deep learning
framework, rather than the OS or the device driver layer where the
workloads are highly abstracted.
Operational Flow. The coordinator assigns the top priority to the
rendering task and executes it at the target frame rate. We take this
design decision as degradation or fluctuation in the rendering frame
rate immediately affects the usability of AR apps. It is possible to
change the scheduling policy to make rendering and DNN tasks to
have the same priority in case rendering is less important.

The coordinator takes in the DNN inference requests from the
main thread via admission control, so that the inference of a DNN
is enqueued only after its previous inference has finished. When
a DNN inference is enqueued, the latest camera frame is fed as
input after either resizing it to the model input size or cropping the
sub-region depending on the task. The scheduling event is triggered
after every rendering event to decide the priority between DNNs
and determine which DNN chunk (partitioned by the analyzer)
to run on the GPU until the next rendering event. To achieve the
goal, we define a utility function that characterizes the priority
of a DNN and formulate a scheduling problem that enables fine-
grained GPU time-sharing between multiple DNNs to satisfy the
app requirements. It also decides whether to offload some DNNs to
the CPU in case the GPU contention level is too high.

6.2 Utility Function
To schedule multiple DNNs, we need a formal way to compare
which DNN is more important to run at a given time. For this
purpose, we define a utility function for each DNN. The utility of a
DNN Di whose k-th inference is enqueued by the main thread at
t istar t ,k is modeled as a weighted sum of the two terms,

UDi (t) = LDi (t , t
i
star t ,k) + α ·CDi (t

i
star t ,k , t

i
star t ,k−1), (2)

where L(t, tstar t) is the latency utility that measures the freshness
of the inference, CDi (t

i
star t ,k , t

i
star t ,k−1) is the content variation

utility that captures how rapidly the scene content has changed
from the last DNN inference, and α is the scaling factor (empirically
set as 0.01 in our current implementation).

6.2.1 Latency Utility
The latency utility of the DNN Di is calculated as,

LDi (t , t
i
star t ,k) = L

0
Di
−

(
βi · (t − t istar t ,k)

γi
)2

. (3)

The latency utility is modeled as a concave function so that it de-
creases more rapidly over time to prevent the coordinator from

MobiCom ’20, September 21–25, 2020, London, United Kingdom Juheon Yi and Youngki Lee

 0

 1

 2

YOLO-v2

RetinaFace

ArcFace

DeepLab-v3

StyleTransfer

EAST

In
fe

re
n

c
e

 t
im

e
 (

s
)

GPU(isolated)
GPU(w/ camera)

CPU(isolated)
CPU(w/ camera)

Figure 9: DNN inference latency with
and without camera.

 0
 1
 2
 3
 4
 5
 6

YOLO-v2

RetinaFace

ArcFace

DeepLab-v3

StyleTransfer

EAST

In
fe

re
n

c
e

 t
im

e
 (

s
)

GPU
CPU(BIG)

CPU(LITTLE)

Figure 10: Example DNN latency profil-
ing result on Google Pixel 3 XL.

 0
 100
 200
 300
 400
 500

YOLO-v2

RetinaFace

ArcFace

DeepLab-v3

StyleTransfer

EASTIn
fe

re
n

c
e

 t
im

e
 (

m
s

)

1 3 5 10 Full

Figure 11: DNN inference latencies for
varying partition sizes.

Rendering interval !" ms

DNN
model layers

!
" - #$%&'%$

()=1
Partition

index (! (* (+ (,=N

GPU Time

Rendering latency #$%&'%$ ms

Figure 12: Operation of DNN partitioning.

delaying the execution too long. Three parameters can be config-
ured to set the priorities between DNNs. βi controls the proportion
of the GPU time each DNN can occupy (e.g., setting βi to 1 for all
DNNs will enable equal sharing). L0Di

and γi controls the priority
among DNNs; a DNNwith higher L0Di

andγi will have higher initial
utility but decrease more rapidly, so that the coordinator can allow
it to preempt the GPU more frequently before its utility drops.

6.2.2 Content Variation Utility
The content variation utility Di is computed as the difference be-
tween the input frames of the consecutive inferences at t istar t ,k and
t istar t ,k−1. Normally, this can be done by calculating the structural
similarity (SSIM) [41] between the two frames. However, this is
infeasible in mobile devices due to high computational complex-
ity. Alternatively, we take the approach in [42] and compute the
difference between the Y values (luminance) Yk of the two frames
(which has a high correlation with the SSIM and requires onlyO(N)
computations),

CDi (t
i
star t ,k , t

i
star t ,k−1) =

H∑
h=1

W∑
w=1
|Y k
h,w − Y

k−1
h,w |, (4)

where H ,W is the height and width of the frame.

6.3 Scheduling Problem and Policy
Given the DNNs and their utilities, the coordinator schedules their
execution to maximize the overall performance (defined as a pol-
icy). Specifically, the coordinator operates in a two-step manner:
i) schedule DNNs to efficiently share the GPU, and ii) determine
whether to offload some DNNs to the CPU to resolve contention.

6.3.1 GPU Coordination Policy
Among many possible policies, we define two common GPU coor-
dination policies, following a similar approach in [10]. Assume that
N DNNs D1, ...,DN are running on GPU, with latency constraints
t1,max , ..., tM ,max (which are set appropriately depending on the
app scenario). The two policies are formulated as follows.

MaxMinUtility policy tries to maximize the utility of a DNN that
is currently experiencing the lowest utility. This is done by solving,

min
i

UDi (t) .

s.t. t iend ,k − t
i
star t ,k ≤ ti ,max

(5)

Under the MaxMinUtility policy, the coordinator tries to fairly allo-
cate GPU resources to balance performance across multiple DNNs.
We expect this policy to be useful in AR apps mostly consisted of
continuously executed DNNs that need to share the GPU fairly (e.g.,
augmented interactive workspace scenario in Table 1).
MaxTotalUtility policy tries to maximize the overall sum of utili-
ties of the DNNs. This is done by solving,

max
i

∑N
t=1UDi (t).

s.t. t iend ,k − t
i
star t ,k ≤ ti ,max

(6)

Under the MaxTotalUtility policy, the coordinator favors a DNN
with higher utility (i.e., allow it to preempt the GPU more fre-
quently) and runs the remaining DNNs at the minimum without
violating their deadline. This policy will be useful in case an AR app
requires to run high-priority event-driven DNNs at low response
time (e.g., immersive online shopping scenario in Table 1).

6.3.2 Opportunistic CPU Offloading
As the app runs more DNNs in parallel, the computational complex-
ity may exceed the mobile GPU capabilities. In such a case, GPU
contention would degrade the overall utilities of the DNNs, possibly
making it impossible to satisfy the app requirements. The coordi-
nator periodically determines if some DNNs should be offloaded to
the CPU to reduce the GPU contention level.

Let P1, P2, ..., PN denote the processor (GPU or CPU) the N
DNNs are running on. The processor mapping is determined by
solving the following problem,

max
P1 ,P2 , . . .,PN

∑N
t=1UDi ,Pi (t), (7)

where UDi ,Pi (t) denotes the utility of Di running on processor Pi
(affected by the inference time on Pi , which is profiled by the ana-
lyzer). As changing the target processor (i.e., allocating memory for
the model weights and feature maps) incurs around 50 ms latency
in MACE, we reconfigure the mapping at every 1-second interval.

6.4 Greedy Scheduling Algorithm
Solving the above scheduling problem is computationally difficult,
as well as infeasible to plan offline (as the solution varies depending
on scene contents). Thus, we solve it in a greedy manner to obtain
an approximate solution.
GPU Coordination. For each scheduling event, the coordinator
first checks how many partitions are left to execute for each DNN.
Based on the profiled latencies of the remaining partitions, the
coordinator checks if the inference can finish within the time left

Heimdall: Mobile GPU Coordination Platform
for Augmented Reality Applications MobiCom ’20, September 21–25, 2020, London, United Kingdom

before its deadline; in case a DNN is not expected to finish within
the deadline, the coordinator runs it immediately. If otherwise, the
coordinator determines which DNN to execute based on their cur-
rent utility values. Specifically, the MaxMinUtility policy selects a
DNN with the current lowest utility. The MaxTotalUtility policy
iteratively computes the expected sum of utilities at the current
scheduling event assuming that a specific DNN chunk is executed,
and selects the chunk which maximizes the sum (without consid-
eration of the future). Specifically, the utility sum is estimated by
adding the latency delay equal to the scheduling interval to the
latency utility of the DNNs that are not chosen, so as to reflect the
additional latency delay due to the execution of another DNN.
CPU Offloading. Among the DNNs running on GPU, the coordi-
nator picks the DNN experiencing the highest latency and offloads
it to CPU if the profiled CPU inference time is (1+m)× smaller than
the current latency on GPU (m is a positive margin to avoid ping-
pong effect between CPU and GPU); per each scheduling event,
only one DNN is offloaded to the CPU. If no DNN is offloaded, the
coordinator also checks whether it should bring a DNN on CPU
back to GPU. Similarly, a DNN is reloaded to GPU if its inference
time on CPU is (1+m)× larger than its last inference time on GPU.

7 Additional Optimizations
The end-to-end inference pipeline for every DNN involves several
steps that need to be executed on the CPU: i) preprocessing the input
image before the inference, ii) postprocessing the inference output
to an adequate form, and iii) ops in the model that are unsupported
by the GPU backend of the mobile deep learning framework and
needed to be executed on CPU. Granting GPU access to a DNN
that currently needs to run such steps incurs unwanted GPU idle
time, slowing down the overall inference latency. This becomes
especially significant when processing high-resolution complex
scene images. For example, RetinaFace [22] detector with inference
pipeline shown in Figure 13 spends 106 out of 287 ms total inference
time on CPU to process a 1080p image with 20 faces. To enhance
GPU utilization, we parallelize the following components.

7.1 Preprocessing and postprocessing
Before enqueueing a DNN inference to the task queue for the
Pseudo-Preemptive GPU Coordinator to schedule, we run the fol-
lowing steps in parallel with other DNN inference running on the
GPU), so that the DNN can fully occupy the GPU when given the
access from the coordinator.
Preprocessing. The preprocessing steps involve resizing the input
frame (RGB byte array) to the DNN’s input size, converting it to
float array, and scaling the pixel values (e.g., from [0,255] to [-1,1]).
Postprocessing. The postprocessing steps involve converting the
inference output to task-specific forms. For example, face detection
requires converting the output feature map to bounding boxes and
performing non-maximum suppression to filter out redundant ones.

7.2 CPU Fallback Operators
GPU backend of a mobile deep learning framework typically sup-
ports only a limited number of ops (i.e., a subset of the ops supported
in the cloud framework). In case an op is unsupported by the GPU

Input
image

Preprocessing

Postprocessing

Resize Normalize Memcpy
(CPUàGPU)

Memcpy
(GPUàCPU)

Non-maximum
suppression

Feature mapà
bounding box

byteà
float

Detection
results

Inference
GPU
ops

CPU
fallback

ops

GPU
ops

Figure 13: End-to-end DNN inference pipeline example for
RetinaFace detector.

backend, it falls back to CPU for execution. We identify the CPU
fallback op indexes of a DNN at the profiling stage and run them
in parallel with other DNNs at runtime. Note that CPU fallback
occurs frequently, especially for complex state-of-the-art DNNs.
For example, TF-Lite does not support tf.image.resize() required in
feature pyramid network [35], which most state-of-the-art object
detectors rely on for detecting small objects. Similarly, MACE does
not support common ops such as tf.crop(), tf.stack().

8 Implementation
We implementHeimdall by extending MACE [6], an OpenCL-based
mobile deep learning framework, to partially run a subset of the
ops in the DNN at a time by modifying MaceEngine.Run() (and
underlying functions) to MaceEngine.RunPartial(startIdx, endIdx).
We use OpenCV Android SDK 3.4.3 for camera and image process-
ing. We evaluate Heimdall on two commodity smartphones: LG
V50 (Qualcomm Snapdragon 855 SoC, Adreno 640 GPU) running
on Android 10.0.0 and 9.0.0, and Google Pixel 3 XL (Snapdragon 845
SoC, Adreno 630 GPU) running on Android 9.0.0. We also used two
different vendor-provided OpenCL libraries obtained from LG V50
and Google Pixel 2 ROMs. We achieved consistent results across
different settings, and report the best results on LG V50.

We choose the DNNs with sufficient model accuracy for the
evaluation, implement and port them on MACE (the list is sum-
marized in Table 2). We implement RetinaFace [22], ArcFace [23],
EAST [27], PoseNet [26] using TensorFlow 1.12.0. For MobileNet-
v1 [32], CPM [29], and StyleTransfer [28], we use the models pro-
vided in the MACE model zoo [43]. For DeepLab-v3 [24] and YOLO-
v2 [25], we use the pre-trained models from the original authors.

9 Evaluation
9.1 Experiment Setup
Scenarios.We evaluateHeimdall for 3 scenarios in Table 1 with the
DNNs in Table 2: immersive online shopping, augmented interactive
workspace, and AR emoji.
Evaluation Metrics.
• Rendering Frame Rate: the number of frames rendered on the
screen, measured every 1/3 seconds.
• Inference Latency: the time interval between when the DNN
inference is enqueued to the coordinator (after preprocessing),
and when the last op of the model is executed. While we omitted
pre/postprocessing latency to evaluate only the GPU contention
coordination performance, end-to-end latency can also be enhanced
as we parallelize such steps as well (Section 7).
Comparison Schemes.

MobiCom ’20, September 21–25, 2020, London, United Kingdom Juheon Yi and Youngki Lee

 0
 5

 10
 15
 20
 25
 30

Baseline Model-
agnostic

Heimdall

F
ra

m
e

 r
a

te
 (

fp
s

)

(a) Rendering frame rate.

 0

 500

 1000

 1500

 2000

Baseline Model-
agnostic

Heimdall

In
fe

re
n

c
e
 t

im
e
 (

m
s
)

StyleTransfer
YOLO-v2

PoseNet
DeepLab-v3

(b) DNN inference latency.

Figure 14: Performance overview of Heimdall on LG V50.

 0

 100

 200

 300

YOLO-v2

ArcFace

DeepLab-v3

StyleTransfer

PoseNet

EASTIn
fe

re
n

c
e
 t

im
e
 (

m
s
)

Unpartitioned
Overhead

Rendering
Partitioned

Figure 15: DNN partitioning overhead.

(a) MaxMinUtility. (b) MaxTotalUtility.

Figure 16: Performance comparison of GPU coordination policies.

• Baseline MACE creates multipleMaceEngine instances (one per
each DNN) in separate threads and runs multi-DNN and rendering
tasks in parallel without any coordination.
• Model-Agnostic DNN Partitioning executes 5 ops of a DNN
at a time (regardless of the model or rendering requirements). This
is supported in MACE to enhance UI responsiveness by prevent-
ing DNNs from occupying the GPU for too long, implemented by
invoking cl::Event.wait() after 5 clEnqueueNDRangeKernel() calls.

9.2 Performance Overview
We first evaluate Heimdall with the MaxTotalUtility policy on im-
mersive online shopping scenario compared with alternatives. The
app requirements are set to render frames at 30 fps, run segmenta-
tion (DeepLab-v3) and hand tracking (PoseNet) at 1 and 2 fps, re-
spectively. Image style transfer (StyleTransfer) is set to have higher
priority than others to satisfy the low response time requirement.

Figure 14(a) shows the rendering performance, where the error
bar denotes the minimum and maximum frame rates. Heimdall
supports a stable 29.96 fps rendering performance, whereas the
baseline suffers from low and fluctuating frame rate (6.82-17.70 fps,
11.99 on average). While the model-agnostic partitioning slightly
enhances the frame rate, it still suffers from fluctuation due to the
uncoordinated execution of DNNs and rendering.

Figure 14(b) shows the DNN latency results, where the error bar
denotes the minimum and maximum inference latencies. Overall,
Heimdall efficiently coordinates the DNNs to satisfy the app re-
quirements: StyleTransfer, PoseNet, and DeepLab-v3 run at 109,
409, 919 ms on average, respectively (maximum 139, 548, 1064 ms),
while the worst-case inference latency of StyleTransfer is also re-
duced by 14.92× (from 2074 to 139 ms). This is achieved by i) giving
preemptive access to StyleTransfer, ii) running DeepLab-v3 at the
minimum and PoseNet more frequently to satisfy the latency con-
straints of both tasks, and iii) offloading YOLO-v2 to CPU to reduce
GPU contention level (which also benefits YOLO-v2). Baseline and
model-agnostic partitioning that cannot support such coordination
fail to satisfy the app requirements, especially for StyleTransfer
which is more vulnerable to GPU contention due to several CPU
fallback ops as analyzed in Section 3.2.2.

Figure 17: Opportunistic CPU offloading performance.

9.3 DNN Partitioning/Coordination Overhead
Next, we evaluate the DNN partitioning and coordination over-
head on inference latency when executed with 1080p camera frame
rendering at 30 fps. Figure 15 shows that the total GPU latency of
the partitioned DNN chunks remain almost identical to unparti-
tioned inference latency, as Preemption-Enabling DNN Analyzer
tries to pack as many ops as possible. The remaining overhead other
than the rendering latency includes multiple factors, including the
GPU idle time due to DNN chunks that do not perfectly fit into
the rendering interval, scheduling algorithm solver, and logging
process for the evaluation (this is negligible on runtime). Most im-
portantly, our current implementation is limited to coordinating
multiple DNN inferences on CPU (due to fallback or offloading) on
different cores; other tasks (e.g., camera, pre/postprocessing steps)
may interfere and cause latency overhead. We plan to handle the
issue in our future work for further optimization.

9.4 Pseudo-Preemptive GPU Coordinator
GPU Coordination Policy. Figure 16 shows how the 3 DNNs in
the immersive online shopping scenario are coordinated (i.e., utility
over time and GPU occupancy) on the GPU under two policies

Heimdall: Mobile GPU Coordination Platform
for Augmented Reality Applications MobiCom ’20, September 21–25, 2020, London, United Kingdom

 0
 5

 10
 15
 20
 25
 30

Baseline Model-
agnostic

Heimdall

F
ra

m
e

 r
a

te
 (

fp
s

)

Workspace AR emoji

(a) Rendering frame rate.

 0

 200

 400

 600

Baseline Model-
agnostic

Heimdall

In
fe

re
n

c
e

 t
im

e
 (

m
s

)

PoseNet EAST

(b) DNN inference latency (interactive workspace).

 0

 400

 800

 1200

Baseline Model-
agnostic

Heimdall

In
fe

re
n

c
e

 t
im

e
 (

m
s

)

StyleTransfer
RetinaFace

DeepLab-v3

(c) DNN inference latency (AR emoji).

Figure 18: Performance of Heimdall for other AR app scenarios.

in Section 6.3.1. Figure 16(a) shows that the MaxMinUtility policy
executes a DNN with the currently lowest utility and enables a fair
resource allocation between the 3 DNNs. Figure 16(b) shows that
MaxTotalUtility policy favors PoseNet which has higher priority
than others (i.e., higher L0Di

andγi in Equation (3), meaning that the
utility is higher when the inference is enqueued but decays rapidly
over time) to maximize the total utility. As a result, the utility of
PoseNet remains higher than that under the MaxMinUtility policy.
Opportunistic CPU Offloading. Next, we incorporate the op-
portunistic CPU offloading in the same setting as in Figure 16(a).
Figure 17 shows the GPU/CPU occupancy and utility over time for
the 3 DNNs. When CPU offloading is triggered at around t=1600 ms,
YOLO-v2 (which had the least priority and thus had been executed
sporadically) is offloaded to CPU. This benefits the other two DNNs
on GPU as the contention level decreases (notice that the utility
of PoseNet becomes higher after CPU offloading), while YOLO-v2
also benefits as it experiences faster inference latency as compared
to when it was contending with the other two DNNs on GPU.

9.5 Performance for Various App Scenarios
Figure 18 shows the performance of Heimdall on two different
scenarios: augmented interactive workspace and AR emoji. Overall,
we observe consistent results. Figure 18(a) shows that Heimdall
enables higher and stable rendering frame rate. Figure 18(b) shows
that for the interactive workspace scenario, Heimdall coordinates
the two DNNs by offloading the text detection (EAST) to the CPU
so that the hand tracking (PoseNet) can run more frequently on the
GPU. However, the latency gain is not as high as expected due to
the scheduling overhead caused by multiple concurrent CPU tasks.
Finally, Figure 18(c) shows that for the AR emoji scenario, Heimdall
prioritizes StyleTransfer to guarantee low inference latency, while
balancing the latencies between RetinaFace and DeepLab-v3.

9.6 DNN Accuracy
We evaluate the impact of Heimdall on DNN accuracy for the AR
emoji scenario. For repeatable evaluation, we sample 5 videos of a
single talking person from the 300-VW dataset [44]. As the dataset
does not provide the face bounding box and person segmentation
mask labels, we run our DNNs on every frame and use the results
as ground truth to be compared with the runtime detection results.
Table 4 shows the detection accuracy in terms of mean Intersec-
tion over Union (IoU). For baseline multi-threading, face detection
accuracy remains low, as RetinaFace (with several CPU fallback
ops) runs at only ≈1 fps due to contention with DeepLab-v3 (Fig-
ure 18(c)). While model-agnostic partitioning alleviates the issue,
it cannot coordinate the two DNNs. With Heimdall, we can flexi-
bly run RetinaFace more frequently (≈3 fps) to improve the face

Table 4: Face detection and person segmentation accuracy
(IoU) for the AR emoji scenario.

Baseline Model-agnostic Heimdall

Bounding box Mask Bounding box Mask Bounding box Mask

0.52±0.12 0.93±0.02 0.57±0.12 0.92±0.02 0.63±0.11 0.90±0.03

detection accuracy at the cost of relatively smaller loss in the seg-
mentation accuracy. Note that the performance gain came from
utilizing the app-specific content characteristics (i.e., the face moves
more rapidly than the body). For other app scenarios, we can simi-
larly take into account the target scene content characteristics to
coordinate multiple DNNs and improve the overall accuracy.

9.7 Energy Consumption Overhead
Finally, we report the impact of Heimdall on energy consumption.
We use Qualcomm Snapdragon Profiler [45] to measure the system-
level energy consumption. For all the three evaluated app scenarios,
baseline multi-threading consumes 4.8–5.1 W, mostly coming from
the ≈100% GPU utilization which is known to be the dominant
source of mobile SoC energy consumption [46] (capturing 1080p
camera frames and rendering them on screen without any DNN
running consumes 1.9–2.3 W). Similarly, the GPU utilization in
Heimdall remains ≈100% and consumes 5.1-5.2 W. The slight in-
crease in the energy consumption comes from the additional CPU
tasks coming from the increased frame rate and the scheduling
overhead of the Pseudo-Preemptive GPU coordinator.

10 Discussion
10.1 Will the Challenge Persist?
10.1.1 How Will Mobile GPU Evolution Affect Heimdall?
Even when mobile GPUs evolve similar to desktop GPUs, the need
for an app-aware coordination platform to dynamically schedule
multiple tasks to satisfy the AR app requirements will persist.
Parallelization. With the architecture support, we can consider
porting desktop GPU computing platforms (e.g., recent CUDA for
ARM server platforms [47]) and spatially partitioning the GPU to
runmulti-DNN and rendering tasks concurrently. However, due to a
limited number of computing cores and power of mobile GPUs (e.g.,
RTX 2080Ti: 13.45 TFLOPs vs. Adreno 640: 954 GFLOPs), static par-
titioning would be limited in running multiple compute-intensive
DNNs. Instead, a coordinator should dynamically allocate resources
at runtime; when an inference request for a heavy DNN with high
priority is enqueued, the coordinator should allocate more number
of partitioned resources dynamically to minimize response time.
Preemption.With fine-grained, near-zero overhead preemption
support (e.g., NVIDIA Pascal GPUs [48] support instruction-level

MobiCom ’20, September 21–25, 2020, London, United Kingdom Juheon Yi and Youngki Lee

preemption at 0.1 ms scale [49]), we can consider employing prior
multi-DNN scheduling for desktop GPUs [17, 18]. However, prior
works mostly assume that the task priorities are fixed in advance,
whereas in AR apps they can be dynamic depending on the scene
contents (e.g., in the surroundings monitoring scenario, face de-
tection would need to run more frequently than object detection
in case there are many people). Therefore, a coordinator would be
needed to dynamically adjust priorities at runtime for app usability.

10.1.2 Will Heimdall be Useful for NPUs/TPUs?
Recently, neural processors are being embedded in mobile devices
(e.g., Google Pixel 4 edge TPU [50], Huawei Kirin NPU [51]). Such
processors maximize computing power by packing a large num-
ber of cores specialized for DNN inference. For example, Google
TPUs employ 128×128 systolic array-based matrix units (MXUs),
which accelerate matrix multiplication by hard-wired calculation
without memory access. We envision that our Pseudo-Preemption
mechanism can also be useful in coordinating multiple tasks on
such neural processors, as i) it is challenging to preempt the hard-
wired MXUs, and ii) context switch overhead on bandwidth-limited
mobile SoCs can be more costly due to larger state sizes than GPUs.

10.2 Other Discussions
Generality. We believe Heimdall can be extended to other deep
learning frameworks such as TF-Lite as it does not require OS or
underlying system supports. The key requirement of Heimdall is to
partially run a subset of the ops in the DNN graph. On TF-Lite, it
can be implemented by modifying the Interpreter.Invoke() function
and Subgraph.Invoke() function to take the start and end index of
the TFLiteNode to compute as input parameters.
Scalability. To scaleHeimdall to more number of concurrent DNNs
with diverse app requirements, further optimizations can help im-
prove performance; such include advanced profiling techniques to
enable more efficient scheduling (especially for the runtime CPU
task profiling as analyzed in Section 5.1), and incorporating more in-
telligent utility-based scheduling policies (possibly motivated from
QoS-based scheduling in wireless networking or cloud computing
systems). Furthermore, in cases where multiple concurrent AR apps
are running, an OS-level extension would be required.
Extension to Complex Rendering Tasks. Heimdall is currently
evaluated on 30 fps 1080p frame rendering task. Though we expect
Heimdall can be extended similarly to more complex rendering
tasks (e.g., 60 fps, 2160p), we conjecture that joint coordination and
optimization of multi-DNN and rendering will help further optimize
performance. Heimdall can be incorporated with recent works
that dynamically adjust rendering quality to optimize resource
consumption and meet dynamically changing app demands (e.g.,
AR/VR [52–58], games [42, 59], or web browsing [60]).
Integration with Cloud Offloading. Heimdall can be integrated
with cloud offloading systems [11, 61, 62] to collaboratively execute
the multi-DNN workload. For example, we can extend the oppor-
tunistic CPU offloading to determine which DNN to offload to the
cloud, depending on GPU contention level and network conditions.
AR Glass Support. Heimdall can be implemented similarly on AR
glasses, as they are typically equipped with comparable computing
units with the smartphones used in our evaluation (e.g., Snapdragon

850 and 845 for HoloLens 2 [2] and Nreal Light [63], respectively).
However, more careful optimizations will be required for power
consumption and heat dissipation. Furthermore, in case the DNN
inferences for the AR glass inputs are offloaded to the smartphone
to save energy, network latency will also need to be considered.

11 Related Work
Continuous Mobile Vision and AR. LiKamWa et al. [64] opti-
mize energy consumption of continuous mobile vision systems,
while Starfish [65] supports concurrency between multiple apps.
Gabriel [66], OverLay [67] and MARVEL [68] utilize cloud for cog-
nitive assistance and mobile AR. Heimdall designs a mobile GPU
coordination platform for future multi-DNN enabled AR apps.
Mobile Deep Learning Framework. Although several frame-
works have been developed from industry [5, 6, 69, 70] and academia [7,
8, 31, 71–76], they have been mostly focused on running a single
DNN in an isolated environment (i.e., no other task contending
over GPU). Few studies aimed at running multiple DNNs, but are
limited to be applied to Heimdall. DeepEye [9] and NestDNN [10]
mainly focuses on memory optimization. DeepEye [9] parallelizes
fully connected layer parameter loading and convolutional layer
computation but runs only a single DNN on GPU at each time.
NestDNN [10] dynamically adapts model size considering available
resources but does not consider the coordination of multi-DNN
inferences. Lee et al. [77] and Mainstream [78] focus on sharing
weights and computations between multiple DNNs. EagleEye [11]
runs a multi-DNN face identification pipeline but offloads most
of the computation to the cloud. Most importantly, none of the
existing studies considered rendering-DNN GPU contention.
Multi-Task Scheduling onDesktopGPUs. Several studies aimed
at enabling efficient GPU sharing on desktop/server GPUs, ei-
ther by multiplexing multiple kernels temporally [12–14] or spa-
tially [20, 37, 79–82]. Such techniques have been also applied for
multi-DNN workloads [17–19, 83]. However, they are ill-suited
for mobile GPUs due to limited architecture support and memory
bandwidth (see Section 4.1.1 for analysis).

12 Conclusion
We presented Heimdall, a mobile GPU coordination platform for
emerging AR apps. To coordinate multi-DNN and rendering tasks,
the Preemption-Enabling DNN Analyzer partitions the DNN into
smaller units to enable fine-grained GPU time-sharing with min-
imal DNN inference latency overhead. Furthermore, the Pseudo-
Preemptive GPU Coordinator flexibly prioritizes and schedules the
multi-DNN and rendering tasks on GPU and CPU to satisfy the
app requirements. Heimdall efficiently supports multiple AR app
scenarios, enhancing the frame rate from 11.99 to 29.96 fps while
reducing the worst-case DNN inference latency by up to ≈15 times
compared to the baseline multi-threading approach.

Acknowledgments
We sincerely thank our anonymous shepherd and reviewers for their
valuable comments. This work was supported by Samsung Research
Funding & Incubation Center of Samsung Electronics under project
number SRFC-IT2001-03. Youngki Lee is the corresponding author
of this work.

Heimdall: Mobile GPU Coordination Platform
for Augmented Reality Applications MobiCom ’20, September 21–25, 2020, London, United Kingdom

References
[1] “Augmented Reality (AR) market size worldwide in 2017, 2018 and 2025,” https://

www.statista.com/statistics/897587/world-augmented-reality-market-value/. Ac-
cessed: 25 Mar. 2020.

[2] “Microsoft HoloLens 2,” https://www.microsoft.com/en-us/hololens/. Accessed:
25 Mar. 2020.

[3] “Magic LeapOneAR glass,” https://www.magicleap.com/magic-leap-1/. Accessed:
25 Mar. 2020.

[4] Z. Li, M. Annett, K. Hinckley, K. Singh, and D. Wigdor, “HoloDoc: Enabling mixed
reality workspaces that harness physical and digital content,” in Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems, 2019, pp. 1–14.

[5] “TensorFlow-Lite GPU Delegate,” https://github.com/tensorflow/tensorflow/tree/
master/tensorflow/lite/delegates/gpu. Accessed: 25 Mar. 2020.

[6] “XiaoMi Mobile AI Compute Engine (MACE),” https://github.com/XiaoMi/mace.
Accessed: 25 Mar. 2020.

[7] L. N. Huynh, Y. Lee, and R. K. Balan, “DeepMon: Mobile GPU-based deep learning
framework for continuous vision applications,” in Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services. ACM,
2017, pp. 82–95.

[8] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “DeepCache: Principled cache for
mobile deep vision,” in Proceedings of the 24th Annual International Conference on
Mobile Computing and Networking. ACM, 2018, pp. 129–144.

[9] A. Mathur, N. D. Lane, S. Bhattacharya, A. Boran, C. Forlivesi, and F. Kawsar,
“DeepEye: Resource efficient local execution of multiple deep vision models using
wearable commodity hardware,” in Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services. ACM, 2017, pp. 68–81.

[10] B. Fang, X. Zeng, and M. Zhang, “NestDNN: Resource-aware multi-tenant on-
device deep learning for continuous mobile vision,” in Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking. ACM,
2018, pp. 115–127.

[11] J. Yi, S. Choi, and Y. Lee, “EagleEye: Wearable camera-based person identifica-
tion in crowded urban spaces,” in Proceedings of the 16th Annual International
Conference on Mobile Computing and Networking. ACM, 2020.

[12] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero, “Enabling
preemptive multiprogramming on GPUs,” in 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA). IEEE, 2014, pp. 193–204.

[13] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative preemption for
multitasking on a shared GPU,” ACM SIGPLAN Notices, vol. 50, no. 4, pp. 593–606,
2015.

[14] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo, “Simultaneous
multikernel GPU: Multi-tasking throughput processors via fine-grained sharing,”
in 2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2016, pp. 358–369.

[15] K. Zhang, B. He, J. Hu, Z. Wang, B. Hua, J. Meng, and L. Yang, “G-NET: Effective
GPU sharing in NFV systems,” in 15th USENIX Symposium on Networked Systems
Design and Implementation NSDI 18), 2018, pp. 187–200.

[16] G. Wang, Y. Lin, and W. Yi, “Kernel fusion: An effective method for better power
efficiency on multithreaded gpu,” in 2010 IEEE/ACM Int’l Conference on Green
Computing and Communications & Int’l Conference on Cyber, Physical and Social
Computing. IEEE, 2010, pp. 344–350.

[17] Y. Xiang and H. Kim, “Pipelined data-parallel CPU/GPU scheduling for multi-
DNN real-time inference,” in IEEE RTSS, 2019.

[18] H. Zhou, S. Bateni, and C. Liu, “S3DNN: Supervised streaming and scheduling
for GPU-accelerated real-time DNN workloads,” in 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE, 2018, pp.
190–201.

[19] Z. Fang, D. Hong, and R. K. Gupta, “Serving deep neural networks at the cloud
edge for vision applications on mobile platforms,” in Proceedings of the 10th ACM
Multimedia Systems Conference, 2019, pp. 36–47.

[20] “NVIDIA Hyper-Q,” http://developer.download.nvidia.com/compute/DevZone/C/
html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf. Accessed: 25 Mar. 2020.

[21] J. Lee, N. Chirkov, E. Ignasheva, Y. Pisarchyk, M. Shieh, F. Riccardi, R. Sarokin,
A. Kulik, and M. Grundmann, “On-device neural net inference with mobile gpus,”
arXiv preprint arXiv:1907.01989, 2019.

[22] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou, “RetinaFace: Single-stage
dense face localisation in the wild,” arXiv preprint arXiv:1905.00641, 2019.

[23] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Additive angular margin loss
for deep face recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 4690–4699.

[24] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder
with atrous separable convolution for semantic image segmentation,” in Proceed-
ings of the European conference on computer vision (ECCV), 2018, pp. 801–818.

[25] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in IEEE CVPR,
2017.

[26] C. Zimmermann and T. Brox, “Learning to estimate 3d hand pose from single rgb
images,” in Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 4903–4911.

[27] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang, “EAST: an
efficient and accurate scene text detector,” in Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, 2017, pp. 5551–5560.

[28] L. Engstrom, “Fast style transfer,” https://github.com/lengstrom/fast-style-
transfer/, 2016.

[29] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose ma-
chines,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4724–4732.

[30] “Samsung Galaxy S9 AR Emoji,” https://www.sammobile.com/news/galaxy-s9-
ar-emoji-explained-how-to-create-and-use-them/. Accessed: 25 Mar. 2020.

[31] X. Zeng, K. Cao, and M. Zhang, “MobileDeepPill: A small-footprint mobile deep
learning system for recognizing unconstrained pill images,” in Proceedings of
the 15th Annual International Conference on Mobile Systems, Applications, and
Services. ACM, 2017, pp. 56–67.

[32] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “MobileNets: Efficient convolutional neural networks for
mobile vision applications,” in arXiv preprint arXiv:1704.04861, 2017.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[34] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.

[35] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 2117–2125.

[36] P. Hu and D. Ramanan, “Finding tiny faces,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 951–959.

[37] R. Ausavarungnirun, V. Miller, J. Landgraf, S. Ghose, J. Gandhi, A. Jog, C. J.
Rossbach, and O. Mutlu, “MASK: Redesigning the GPU memory hierarchy to
support multi-application concurrency,” in ACM SIGPLAN Notices, vol. 53, no. 2.
ACM, 2018, pp. 503–518.

[38] “NVIDIA’s next generation CUDA compute architecture: Kepler GK110,
2012.” https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
documents/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf.
Accessed: 25 Mar. 2020.

[39] M. Guevara, C. Gregg, K. Hazelwood, and K. Skadron, “Enabling task parallelism
in the CUDA scheduler,” in Workshop on Programming Models for Emerging
Architectures, vol. 9. Citeseer, 2009.

[40] “Snapdragon 845: Immersing you in a brave new world of XR.”
https://www.qualcomm.com/news/onq/2018/01/18/snapdragon-845-
immersing-you-brave-new-world-xr. Accessed: 25 Mar. 2020.

[41] Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
from error visibility to structural similarity,” IEEE transactions on image processing,
vol. 13, no. 4, pp. 600–612, 2004.

[42] C. Hwang, S. Pushp, C. Koh, J. Yoon, Y. Liu, S. Choi, and J. Song, “RAVEN:
Perception-aware optimization of power consumption for mobile games,” in
Proceedings of the 23rd Annual International Conference on Mobile Computing and
Networking. ACM, 2017, pp. 422–434.

[43] “XiaoMi Mobile AI Compute Engine (MACE) model zoo,” https://github.com/
XiaoMi/mace-models. Accessed: 25 Mar. 2020.

[44] S. Zafeiriou, G. Tzimiropoulos, and M. Pantic, “The 300 videos in the wild (300-
VW) facial landmark tracking in-the-wild challenge,” in ICCV Workshop, vol. 32,
2015, p. 73.

[45] “Qualcomm Snapdragon Profiler,” https://developer.qualcomm.com/software/
snapdragon-profiler. Accessed: 25 Mar. 2020.

[46] T. Jin, S. He, and Y. Liu, “Towards accurate GPU powermodeling for smartphones,”
in Proceedings of the 2nd Workshop on Mobile Gaming, 2015, pp. 7–11.

[47] “NVIDIA CUDA on Arm,” https://developer.nvidia.com/cuda-toolkit/arm. Ac-
cessed: 25 Mar. 2020.

[48] “NVIDIA Tesla P100, 2016.” https://images.nvidia.com/content/pdf/tesla/
whitepaper/pascal-architecture-whitepaper.pdf. Accessed: 25 Mar. 2020.

[49] “R. Smith and Anandtech. Preemption improved: Fine-grained preemption for
time-critical tasks, 2016.” http://www.anandtech.com/show/10325/the-nvidia-
geforce-gtx-1080-and-1070-founders-edition-review/10. Accessed: 25 Mar. 2020.

[50] “Google Edge TPU,” https://cloud.google.com/edge-tpu?hl=en. Accessed: 25 Mar.
2020.

[51] “Huawei Kirin SoC with NPU,” http://www.hisilicon.com/en/Products/
ProductList/Kirin. Accessed: 25 Mar. 2020.

[52] J. Choi, H. Park, J. Paek, R. K. Balan, and J. Ko, “LpGL: Low-power graphics library
for mobile AR headsets,” in Proceedings of the 17th Annual International Conference
on Mobile Systems, Applications, and Services. ACM, 2019, pp. 155–167.

[53] J. Hu, A. Shearer, S. Rajagopalan, and R. LiKamWa, “Banner: An image sensor re-
configuration framework for seamless resolution-based tradeoffs,” in Proceedings
of the 17th Annual International Conference on Mobile Systems, Applications, and
Services. ACM, 2019, pp. 236–248.

https://www.statista.com/statistics/897587/world-augmented-reality-market-value/
https://www.statista.com/statistics/897587/world-augmented-reality-market-value/
https://www.microsoft.com/en-us/hololens/
https://www.magicleap.com/magic-leap-1/
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/delegates/gpu
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/delegates/gpu
https://github.com/XiaoMi/mace
http://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
http://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
https://github.com/lengstrom/fast-style-transfer/
https://github.com/lengstrom/fast-style-transfer/
https://www.sammobile.com/news/galaxy-s9-ar-emoji-explained-how-to-create-and-use-them/
https://www.sammobile.com/news/galaxy-s9-ar-emoji-explained-how-to-create-and-use-them/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.qualcomm.com/news/onq/2018/01/18/snapdragon-845-immersing-you-brave-new-world-xr
https://www.qualcomm.com/news/onq/2018/01/18/snapdragon-845-immersing-you-brave-new-world-xr
https://github.com/XiaoMi/mace-models
https://github.com/XiaoMi/mace-models
https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.nvidia.com/cuda-toolkit/arm
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://www.anandtech.com/show/10325/ the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10
http://www.anandtech.com/show/10325/ the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10
https://cloud.google.com/edge-tpu?hl=en
http://www.hisilicon.com/en/Products/ProductList/Kirin
http://www.hisilicon.com/en/Products/ProductList/Kirin

MobiCom ’20, September 21–25, 2020, London, United Kingdom Juheon Yi and Youngki Lee

[54] W. Kim, K. T. W. Choo, Y. Lee, A. Misra, and R. K. Balan, “Empath-D: VR-based
empathetic app design for accessibility,” in Proceedings of the 16th Annual Inter-
national Conference on Mobile Systems, Applications, and Services. ACM, 2018,
pp. 123–135.

[55] T. K. Wee, E. Cuervo, and R. Balan, “FocusVR: Effective 8 usable VR display
power management,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 2, no. 3, p. 142, 2018.

[56] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han, “Rubiks: Practical 360-
degree streaming for smartphones,” in Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services. ACM, 2018, pp. 482–494.

[57] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Practical viewport-
adaptive 360-degree video streaming for mobile devices,” in Proceedings of the
24th Annual International Conference onMobile Computing and Networking. ACM,
2018, pp. 99–114.

[58] S. Shi, V. Gupta, and R. Jana, “Freedom: Fast recovery enhanced vr delivery over
mobile networks,” in Proceedings of the 17th Annual International Conference on
Mobile Systems, Applications, and Services. ACM, 2019, pp. 130–141.

[59] B. Anand, K. Thirugnanam, J. Sebastian, P. G. Kannan, A. L. Ananda, M. C. Chan,
and R. K. Balan, “Adaptive display power management for mobile games,” in
Proceedings of the 9th international conference on Mobile systems, applications, and
services. ACM, 2011, pp. 57–70.

[60] M. Dong and L. Zhong, “Chameleon: a color-adaptive web browser for mobile
OLED displays,” in Proceedings of the 9th international conference on Mobile sys-
tems, applications, and services. ACM, 2011, pp. 85–98.

[61] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy,
“MCDNN:An approximation-based execution framework for deep stream process-
ing under resource constraints,” in Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services. ACM, 2016, pp. 123–136.

[62] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A mobile deep learn-
ing framework for edge video analytics,” in IEEE INFOCOM 2018-IEEE Conference
on Computer Communications. IEEE, 2018, pp. 1421–1429.

[63] “NReal Light Mixed Reality Glasses,” https://www.nreal.ai/specs/. Accessed: 25
Mar. 2020.

[64] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong, and P. Bahl, “Energy charac-
terization and optimization of image sensing toward continuous mobile vision,”
in Proceeding of the 11th annual international conference on Mobile systems, appli-
cations, and services. ACM, 2013, pp. 69–82.

[65] R. LiKamWa and L. Zhong, “Starfish: Efficient concurrency support for computer
vision applications,” in Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services. ACM, 2015, pp. 213–226.

[66] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan, “Towards
wearable cognitive assistance,” in Proceedings of the 12th annual international
conference on Mobile systems, applications, and services. ACM, 2014, pp. 68–81.

[67] P. Jain, J. Manweiler, and R. Roy Choudhury, “OverLay: Practical mobile aug-
mented reality,” in Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services. ACM, 2015, pp. 331–344.

[68] K. Chen, T. Li, H.-S. Kim, D. E. Culler, and R. H. Katz, “MARVEL: Enabling
mobile augmented reality with low energy and low latency,” in Proceedings of the
16th ACM Conference on Embedded Networked Sensor Systems. ACM, 2018, pp.
292–304.

[69] “Alibaba Mobile Neural Network (MNN),” https://github.com/alibaba/MNN. Ac-
cessed: 25 Mar. 2020.

[70] “Qualcomm Neural Processing SDK for AI,” https://developer.qualcomm.com/
software/qualcomm-neural-processing-sdk. Accessed: 25 Mar. 2020.

[71] S. Bhattacharya and N. D. Lane, “Sparsifying deep learning layers for constrained
resource inference on wearables,” in Proc. ACM SenSys, 2016.

[72] N. D. Lane, P. Georgiev, and L. Qendro, “DeepEar: robust smartphone audio
sensing in unconstrained acoustic environments using deep learning,” in Proceed-
ings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing. ACM, 2015, pp. 283–294.

[73] S. Yao, Y. Zhao, H. Shao, S. Liu, D. Liu, L. Su, and T. Abdelzaher, “FastDeepIoT:
Towards understanding and optimizing neural network execution time on mobile
and embedded devices,” in Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems. ACM, 2018, pp. 278–291.

[74] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep model
compression for mobile devices: A usage-driven model selection framework,”
in Proceedings of the 16th Annual International Conference on Mobile Systems,
Applications, and Services. ACM, 2018, pp. 389–400.

[75] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and
F. Kawsar, “DeepX: A software accelerator for low-power deep learning infer-
ence on mobile devices,” in Proceedings of the 15th International Conference on
Information Processing in Sensor Networks. IEEE Press, 2016, p. 23.

[76] R. Lee, S. I. Venieris, L. Dudziak, S. Bhattacharya, and N. D. Lane, “MobiSR:
Efficient on-device super-resolution through heterogeneous mobile processors,”
in The 25th Annual International Conference on Mobile Computing and Networking.
ACM, 2019, p. 54.

[77] S. Lee and S. Nirjon, “Fast and scalable in-memory deep multitask learning via
neural weight virtualization,” in Proceedings of the 18th International Conference

on Mobile Systems, Applications, and Services, 2020, pp. 175–190.
[78] A. H. Jiang, D. L.-K. Wong, C. Canel, L. Tang, I. Misra, M. Kaminsky, M. A. Kozuch,

P. Pillai, D. G. Andersen, and G. R. Ganger, “Mainstream: Dynamic stem-sharing
for multi-tenant video processing,” in 2018 USENIX Annual Technical Conference
(USENIX ATC), 2018, pp. 29–42.

[79] “NVIDIA GPU virtualization,” https://www.nvidia.com/ko-kr/data-center/
graphics-cards-for-virtualization/. Accessed: 25 Mar. 2020.

[80] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving GPGPU concur-
rency with elastic kernels,” in ACM SIGPLAN Notices, vol. 48, no. 4. ACM, 2013,
pp. 407–418.

[81] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu, “Improving GPGPU
resource utilization through alternative thread block scheduling,” in 2014 IEEE
20th International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2014, pp. 260–271.

[82] B. Wu, G. Chen, D. Li, X. Shen, and J. Vetter, “Enabling and exploiting flexible task
assignment on GPU through SM-centric program transformations,” in Proceedings
of the 29th ACM on International Conference on Supercomputing. ACM, 2015, pp.
119–130.

[83] M. Yang, S. Wang, J. Bakita, T. Vu, F. D. Smith, J. H. Anderson, and J.-M. Frahm,
“Re-thinking CNN frameworks for time-sensitive autonomous-driving applica-
tions: Addressing an industrial challenge,” in 2019 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2019, pp. 305–317.

https://www.nreal.ai/specs/
https://github.com/alibaba/MNN
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://www.nvidia.com/ko-kr/data-center/graphics-cards-for-virtualization/
https://www.nvidia.com/ko-kr/data-center/graphics-cards-for-virtualization/

	Abstract
	1 Introduction
	2 Applications and Requirements
	2.1 Application Scenarios
	2.2 Workload Characterization

	3 Preliminary Studies
	3.1 Complexity of the State-of-the-art DNNs
	3.2 Multi-DNN GPU Contention
	3.3 Rendering-DNN GPU Contention
	3.4 Summary

	4 Heimdall System Overview
	4.1 Approach
	4.2 Design Considerations
	4.3 System Architecture

	5 Preemption-Enabling DNN Analyzer
	5.1 Overview
	5.2 Latency Profiling
	5.3 DNN Partitioning

	6 Pseudo-Preemptive GPU Coordinator
	6.1 Overview
	6.2 Utility Function
	6.3 Scheduling Problem and Policy
	6.4 Greedy Scheduling Algorithm

	7 Additional Optimizations
	7.1 Preprocessing and postprocessing
	7.2 CPU Fallback Operators

	8 Implementation
	9 Evaluation
	9.1 Experiment Setup
	9.2 Performance Overview
	9.3 DNN Partitioning/Coordination Overhead
	9.4 Pseudo-Preemptive GPU Coordinator
	9.5 Performance for Various App Scenarios
	9.6 DNN Accuracy
	9.7 Energy Consumption Overhead

	10 Discussion
	10.1 Will the Challenge Persist?
	10.2 Other Discussions

	11 Related Work
	12 Conclusion
	Acknowledgments
	References

