
Heimdall: Mobile GPU Coordination Platform
for Augmented Reality Applications

Juheon Yi
johnyi0606@snu.ac.kr

Seoul National University
Seoul, Korea

Youngki Lee
youngkilee@snu.ac.kr

Seoul National University
Seoul, Korea

Abstract
We present Heimdall, a mobile GPU coordination platform for
emerging Augmented Reality (AR) applications. Future AR apps
impose an explored challenging workload: i) concurrent execution
of multiple Deep Neural Networks (DNNs) for physical world and
user behavior analysis, and ii) seamless rendering in presence of the
DNN execution for immersive user experience. Existingmobile deep
learning frameworks, however, fail to support such workload: multi-
DNN GPU contention slows down inference latency (e.g., from
59.93 to 1181 ms), and rendering-DNN GPU contention degrades
frame rate (e.g., from 30 to ≈12 fps). Multi-tasking for desktop
GPUs (e.g., parallelization, preemption) cannot be applied to mobile
GPUs as well due to limited architectural support and memory
bandwidth. To tackle the challenge, we design a Pseudo-Preemption
mechanism which i) breaks down the bulky DNN into smaller
units, and ii) prioritizes and flexibly schedules concurrent GPU
tasks. We prototyped Heimdall over various mobile GPUs (i.e.,
recent Adreno series) and multiple AR app scenarios that involve
combinations of 8 state-of-the-art DNNs. Our extensive evaluation
shows that Heimdall enhances the frame rate from ≈12 to ≈30 fps
while reducing the worst-case DNN inference latency by up to ≈15
times compared to the baseline multi-threading approach.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computer systems organization → Real-time sys-
tem architecture.

Keywords
Mobile Deep Learning, Augmented Reality, Mobile GPUs, Multi-
DNN and Rendering Concurrent Execution

ACM Reference Format:
Juheon Yi and Youngki Lee. 2020. Heimdall: Mobile GPU Coordination Plat-
form for Augmented Reality Applications . In The 26th Annual International
Conference on Mobile Computing and Networking (MobiCom ’20), September
21–25, 2020, London, United Kingdom. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3372224.3419192

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiCom ’20, September 21–25, 2020, London, United Kingdom
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7085-1/20/09. . . $15.00
https://doi.org/10.1145/3372224.3419192

1 Introduction
Augmented Reality (AR) applications (apps) are getting increasing
attention, with the expected market size of $198 billion in 2025 [1].
The life-immersive user experiences accelerate the penetration of
AR apps into various domains including security, commerce, and ed-
ucation (Section 2.1). Also, new forms of AR devices (e.g., Microsoft
HoloLens 2 [2], Magic Leap One [3]) are emerging. Despite the
huge potential, truly immersive AR apps are yet to be developed.

The core challenge lies in the unique workload of AR apps to
seamlessly combine virtual information over the physical world
with resource-constrained AR devices (e.g., wearable and mobile
devices). Specifically, AR apps have the following computational
requirements. First, an AR app needs to accurately analyze the
physical world and user behaviors (e.g., gestures and head move-
ments) to decide which virtual contents to generate and where to
display them. Such analysis often requires a continuous and simul-
taneous execution of multiple Deep Neural Networks (DNNs) on
vision and sensor data streams (see Table 1). Second, the app should
seamlessly synthesize and render virtual contents (e.g., 3D virtual
objects, avatar’s hand gestures) over the analyzed scenes for immer-
sive user experiences. Finally, background DNN computation and
foreground UI rendering should be simultaneously performed in
real-time under resource constraints. In particular, both DNN and
rendering tasks should preferably run on the mobile GPU for low
latency, causing serious contention. Without careful coordination,
rendering and DNN performances degrade significantly even when
the overall workload fits in the capacity of the mobile GPU.

In this paper, we present Heimdall, a mobile GPU coordination
platform to meet the requirements of emerging AR apps. Heimdall
newly designs and implements a Pseudo-Preemptive mobile GPU
coordinator to enable highly flexible coordination among multi-
DNN and rendering tasks. Heimdall is distinguished from prior
work in that i) it coordinates latency-sensitive foreground rendering
tasks along with background DNN tasks to achieve stable rendering
performance of ≈30 fps, and ii) it addresses resource contention
among multiple DNNs to meet their latency requirements.

Designing Heimdall involves the following challenges:
• Multi-DNN GPU Contention. Compared to prior mobile

deep learning frameworks [5–8] that have mostly been designed for
running a single DNN, emerging AR apps require concurrent multi-
DNN execution (Section 2.2). Not only are the individual state-of-
the-art DNNs very complex to run in real-time (Section 3.1), running
multiple DNNs concurrently incurs severe contention over limited
mobile GPU resources, degrading overall performance. For example,
our study shows that running 3 to 4 different DNNs commonly re-
quired in AR apps (e.g., object detection, image segmentation, hand
tracking) concurrently on Google TensorFlow-Lite (TF-Lite) [5] and

https://doi.org/10.1145/3372224.3419192
https://doi.org/10.1145/3372224.3419192

MobiCom ’20, September 21–25, 2020, London, United Kingdom Juheon Yi and Youngki Lee

(a) Criminal chasing. (b) Immersive online shopping. (c) Augmented interactive workspace (source: [4]).

Figure 1: Multi-DNN AR application scenarios.

Xiaomi MACE [6] over high-end Adreno 640 GPU incurs as high
as 19.7× slowdown (Section 3.2). Although several recent studies
aimed at running multiple DNNs concurrently on mobile [9–11],
they have mostly focused on memory optimization [9, 10] or cloud
offloading [11]; multi-DNN GPU contention remains unsolved.
•Rendering-DNNGPU Contention.More importantly, prior

works only consider a DNN running in an isolated environment
where no other task is contending over the GPU. When running
rendering in parallel with DNNs, GPU contention degrades and
fluctuates the frame rate, degrading user experience (e.g., drops
from 30 to 11.99 fps when 4 DNNs run in background (Section 3.3)).

There have been studies to schedule concurrent tasks on desk-
top/server GPUs [12–19], either with parallel execution by dividing
GPU cores (e.g., using NVIDIA Hyper-Q [20]) with hardware ar-
chitectural support, or with time-sharing through preemption (e.g.,
using CUDA stream prioritization). However, mobile GPUs do not
provide architectural support for parallel execution, while fine-
grained preemption is not easy as well due to high context switch
costs caused by large state size and limited memory bandwidth
(Section 4.1.1). Even with architecture evolution, the need for an
app-aware coordinator to dynamically prioritize and allocate re-
sources between multiple DNNs persists (Section 10.1.1). We can
also consider cloud offloading, but it is not trivial to employ it in
outdoor scenarios where network latency is unstable.

To tackle the challenges, we design a Pseudo-Preemption mecha-
nism to support flexible scheduling of concurrent multi-DNN and
rendering tasks on mobile GPU. We take the time-sharing approach
as a baseline, and enable context switches only when a semantic
unit of the DNN or rendering task is complete. This does not incur
additional memory access cost, which is the core difficulty in ap-
plying conventional preemption (triggered by periodic hardware
interrupt regardless of the app context) for mobile GPUs. Accord-
ingly, it allows the multi-DNN and rendering tasks to time-share
the GPU at a fine-grained scale with minimal scheduling overhead.
With this new capability, we flexibly prioritize and run the tasks
on the GPU to meet the latency requirements of the AR app. Our
approach can also be useful for the emerging neural processors (e.g.,
NPUs or TPUs), as preempting hard-wired matrix multiplications
is complicated and context switch overhead can be more costly due
to larger state sizes (Section 10.1.2).

To implement Pseudo-Preemption mechanism, Heimdall incorpo-
rates the following components:
• Preemption-Enabling DNN Analyzer. The key in realizing

Pseudo-Preemption is breaking down the bulky DNNs into small
schedulable units. Our Preemption-Enabling DNN Analyzer mea-
sures the execution times of DNN and rendering tasks on the target

mobile device and partitions the DNNs into the units of scheduling
to enable fine-grained GPU time-sharing with minimal scheduling
overhead. We notice that the execution time of individual DNN
operator (op) is sufficiently small (e.g., <5 ms for 89.8% of ops).
Exploiting this, the analyzer groups several consecutive ops as a
scheduling unit which can fit between the two consecutive ren-
dering events. As rendering latencies are often very small (e.g.,
2.7 ms for rendering a 1080p camera frame), each task is used as the
scheduling unit. Note that existing frameworks run the entire bulky
DNN inference all at once (e.g., Interpreter.Run() in TF-Lite [21],
MaceEngine.Run() in MACE [6]), limiting multi-DNN and render-
ing tasks to share the mobile GPU at a very coarse-grained scale.
• Pseudo-Preemptive GPU Coordinator. We design a GPU

coordinator that schedules the DNN and rendering tasks on GPU
and CPU. It can employ various scheduling policies based on mul-
tiple factors: profiled latencies, scene variations, and app/user-
specified latency requirements. As the base scheduling policy, the
coordinator assigns the top priority to the rendering tasks and exe-
cutes them at the target frame rate (e.g., 30 fps) to guarantee the
usability of the app. Between the rendering events, the coordinator
decides the priority between multiple DNNs and determine which
chunk of DNN ops (grouped by the analyzer) to run on the GPU. It
also decides whether to offload some DNNs to the CPU in case there
is a high level of contention on the GPU. Note that existing frame-
works provide no means to prioritize a certain task over others,
making it difficult to guarantee performance under contention.

Our major contributions are summarized as follows:
• To our knowledge, this is the first mobile GPU coordination
platform for emerging AR apps that require concurrent multi-
DNN and rendering execution. We believe our platform can be
an important cornerstone to support many emerging AR apps.
• We design a Pseudo-Preemption mechanism to overcome the lim-
itations of mobile GPUs for supporting concurrency. With the
mechanism, Heimdall enhances the frame rate from ≈12 to ≈30
fps while reducing the worst-case DNN inference latency by up
to ≈15 times compared to the baseline multi-threading method.
• We implement Heimdall on MACE [6], an OpenCL-based mobile
deep learning framework, and conduct an extensive evaluation
with 8 state-of-the-art DNNs (see Table2) and various mobile
GPUs (i.e., recent Adreno series) to verify the effectiveness.

2 Applications and Requirements
2.1 Application Scenarios
Criminal Chasing (Figure 1(a)). A police officer chasing a crim-
inal in a crowded space (e.g., shopping mall) sweeps the mobile

	Abstract
	1 Introduction
	2 Applications and Requirements
	2.1 Application Scenarios
	2.2 Workload Characterization

	3 Preliminary Studies
	3.1 Complexity of the State-of-the-art DNNs
	3.2 Multi-DNN GPU Contention
	3.3 Rendering-DNN GPU Contention
	3.4 Summary

	4 Heimdall System Overview
	4.1 Approach
	4.2 Design Considerations
	4.3 System Architecture

	5 Preemption-Enabling DNN Analyzer
	5.1 Overview
	5.2 Latency Profiling
	5.3 DNN Partitioning

	6 Pseudo-Preemptive GPU Coordinator
	6.1 Overview
	6.2 Utility Function
	6.3 Scheduling Problem and Policy
	6.4 Greedy Scheduling Algorithm

	7 Additional Optimizations
	7.1 Preprocessing and postprocessing
	7.2 CPU Fallback Operators

	8 Implementation
	9 Evaluation
	9.1 Experiment Setup
	9.2 Performance Overview
	9.3 DNN Partitioning/Coordination Overhead
	9.4 Pseudo-Preemptive GPU Coordinator
	9.5 Performance for Various App Scenarios
	9.6 DNN Accuracy
	9.7 Energy Consumption Overhead

	10 Discussion
	10.1 Will the Challenge Persist?
	10.2 Other Discussions

	11 Related Work
	12 Conclusion
	Acknowledgments
	References

