
GROOT: A Real-time Streaming System of
High-Fidelity Volumetric Videos

Kyungjin Lee
Seoul National University

jin11542@snu.ac.kr

Juheon Yi
Seoul National University
johnyi0606@snu.ac.kr

Youngki Lee
Seoul National University
youngkilee@snu.ac.kr

Sunghyun Choi
Samsung Research

sungh.choi@samsung.com

Young Min Kim
Seoul National University
youngmin.kim@snu.ac.kr

Abstract
We present GROOT, a mobile volumetric video streaming system
that delivers three-dimensional data to mobile devices for a fully
immersive virtual and augmented reality experience. The system
design for streaming volumetric videos should be fundamentally
different from conventional 2D video streaming systems. First, the
amount of data required to deliver the 3D volume is considerably
larger than conventional videos with frames of 2D images, even
compared to high-resolution 2D or 360◦ videos. Second, the 3D data
representation, which encodes the surface of objects within the
volume, is a sparse and unorganized data structure with varying
scales, whereas a conventional video is composed of a sequence of
images with the fixed-size 2D grid structure. GROOT is a stream-
ing framework with a novel data structure that enables not only
real-time transmission and decoding on mobile devices but also con-
tinuous on-demand user view adaptation. Specifically, we modify
the conventional octree to introduce the independence of leaf nodes
with minimal memory overhead, which enables parallel decoding
of highly irregular 3D data. We also developed a suite of techniques
to compress color information and filter out 3D points outside of a
user’s view, which efficiently minimizes the data size and decoding
cost. Our extensive evaluation shows that GROOT achieves more
stable but faster frame rates compared to any previous method to
stream and visualize volumetric videos on mobile devices.

CCS Concepts
•Networks→Mobile networks; •Computer systems organi-
zation→Real-time systemarchitecture; •Computingmethod-
ologies → Image compression;Mixed / augmented reality.

Keywords
Volumetric Video, Video Streaming, Mobile Augmented Reality,
Virtual Reality, Point Cloud

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiCom ’20, September 21–25, 2020, London, United Kingdom
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7085-1/20/09. . . $15.00
https://doi.org/10.1145/3372224.3419214

ACM Reference Format:
Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim.
2020. GROOT: A Real-time Streaming System of High-Fidelity Volumetric
Videos . In The 26th Annual International Conference on Mobile Computing
and Networking (MobiCom ’20), September 21–25, 2020, London, United King-
dom. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3372224.
3419214

1 Introduction
Volumetric video is an emerging media that provides a highly immer-
sive and interactive user experience. Different from 2D videos and
360◦ videos, the volumetric video consists of 3D data, enabling users
to watch the video with six-degrees-of-freedom (6DoF). Alongside
with the recent advances in virtual reality (VR) and augmented
reality (AR), volumetric videos conjure numerous compelling ap-
plications. For instance, music performances or sports games that
are captured as volumetric videos will allow users to view their
favorite performer or player from different angles and distances. It
can also be utilized in various fields such as education for remote
virtual lectures and even for medical, architecture, and arts. While
volumetric video contents may consist of anything captured in 3D,
from objects, animals, to humans, human contents are the most
popular and yet challenging subject to handle. The market growth
of volumetric videos is projected to reach $2.8 billion by 2023 [9],
and it is considered as the key application of 5G [10].

Despite its potential, it involves several critical technical chal-
lenges to enable real-time delivery of volumetric videos to mobile
devices.

• Real-time Data Transmission. Volumetric videos should be
delivered to mobile devices over the wireless network to allow the
users to move freely in 6DoF for an immersive experience. Vol-
umetric video is most commonly represented as the point cloud
format composed of a list of 3D coordinates and RGB colors. If the
individual points are simply concatenated without compression, it
enables rendering with fully parallel processing at the expense of
large data size. Single frame size of a volumetric video can typically
range from 4 MB to more than 15 MB (See Table 1), and naive,
uncompressed delivery will require 1Gbps to 3.6Gbps transmis-
sion rate, which is beyond the capability of current WiFi or 5G
networks [12, 39].

• Real-time Decoding and Rendering on Resource-
constrained Mobile Devices. For the users to watch volumet-
ric videos in 6DoF, the content should be decoded and updated in
30 fps while the viewpoint of the user is updated in 60 fps (<20ms of

https://doi.org/10.1145/3372224.3419214
https://doi.org/10.1145/3372224.3419214
https://doi.org/10.1145/3372224.3419214

MobiCom ’20, September 21–25, 2020, London, United Kingdom Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim

Figure 1: State-of-the-art volumetric video samples fromCMU Panoptic Dataset (a, b) [29] and 8i Voxelized Full Bodies (c) [21].

motion-to-photon latency). There has been extensive research in 3D
volumetric video compression [19, 22, 30, 50, 56], but system design
for real-time streaming has not been explored sufficiently. For in-
stance, Google Draco [2] and Point Cloud Library (PCL) [8], widely
used open-source libraries to compress volumetric videos, decrease
the data size by 4×, but the decoding speed is far from reaching the
30 fps frame rate even on state-of-the-art mobile devices such as
iPhone XS (See details in Section3.3). Recently, ViVo [14] took the
first step to enable the streaming of volumetric videos to mobile
devices. The system applies visibility-aware optimizations to reduce
the network bandwidth usage on average of 40% while improving
the decoding speed using multi-threading. However, the underlying
decoder is also based on Google Draco, which is hard to scale when
decoding complexity increases with a larger number of points; it
supports real-time streaming with up to 300k points but is hard to
scale when the number of points and resolution increase.

To address the challenges, we propose GROOT, an end-to-end
streaming pipeline for volumetric videos. We observe that for seam-
less and real-time streaming of volumetric videos, it is critical to
compress the large amount of 3D data and, at the same time, en-
able fast and light-weighted decoding on the mobile device fully
exploiting the parallel nature of point clouds. We suggest a novel
compression and decoding scheme, which not only improves the
compression rate but also supports real-time decoding on mobile
devices. In addition, it can be modified in real-time for runtime op-
timizations such as user view adaptation to further reduce the data
size while maintaining a sufficient perceptual quality. GROOT can
stream state-of-the-art videos at a 30 fps frame rate while maintain-
ing the rendering frame rate at 60 fps, whereas the prior systems
support only 2 to 20 fps depending on the volumetric video content.

In particular, GROOT features the following three novel tech-
niques.

• Real-time Parallel Decoding. We develop new data com-
pression and decoding techniques specialized for volumetric video
streaming with a newly designed tree structure, PD-Tree, Parallel
Decodable Tree. We take the octree-based approach [30] as the
baseline, which compresses the point clouds in a tree format recur-
sively dividing the 3D space into 8 sub-spaces. The problem with
the original octree structure is that the inter-dependency from the
root to the leaf node prohibits the parallel decoding and signifi-
cantly delays the decoding process. The suggested PD-Tree removes
dependencies between the different branches of the tree, and we
demonstrate the power of the data structure with a high-speed
GPU-enabled decoder integrated into the rendering pipeline. The
new compression and decoding techniques enable 30 fps streaming

speed, which was not possible with the original tree-based com-
pression techniques such as Google Draco [2] or PCL [8]. Note that
we excluded 2D projection-based compression methods such as
MPEG V-PCC [7]. The approach enables fast decoding based on
long-studied 2D video compression techniques, but it is difficult
to encode generic point cloud videos with multiple overlapping
people and to apply user-adaptive optimization techniques.

•ColorMap Encoding.We develop a color map encoding tech-
nique to further reduce the size of the compressed video. The prior
methods focus more on compressing coordinates of 3D points that
the size of the color map is 2× of the coordinate information after
the compression. To overcome the low compression rate, we pack
the color values as 2D pixels of images and utilize the conventional
JPEG compression. Here, we take advantage of the PD-Tree, where
the leaf nodes can be processed in parallel, and therefore the order
of the points can be flexibly re-arranged. We position similar colors
into 8 × 8 blocks within the image to maintain the visual quality
while achieving a higher compression ratio.

• Continuous and Responsive User-view Adaptation. Fi-
nally, we show that it is possible to adopt runtime optimization
techniques such as user view frustum culling and resolution adap-
tation directly to the streaming pipeline without modifying the
decoder. Although prior systems like ViVo [14] has applied the
similar idea, our paralleled structure is unique in that: 1) it provides
much faster updates of the content when a user’s view needs to
change, and 2) it enables continuous changes of the contents to
effectively reduce the data size while maintaining the perceived
quality of the videos.

The summary of our contributions is as follows:
• To our knowledge, GROOT is one of the first mobile volumetric
video streaming systems. In particular, our system features in
supporting real-time streaming of state-of-the-art volumetric
videos (with a large number of sparse points or high resolu-
tions).

• We develop a suite of techniques, real-time parallel decoding,
color map encoding, and continuous and responsive user-view
adaptation. These techniques enable real-time streaming of
volumetric videos by reducing the data size and improving the
decoding speed on resource-constrained mobile devices.

• We implement a prototype of our proposed system and con-
duct thorough experiments with the existing state-of-the-art
datasets.GROOT achieves a 30 fps frame rate and 60 fps motion-
to-photon latency, which is 9.4× and 3× better than optimized
Google Draco and PCL, respectively. GROOT also improves the
compression rate by 2×.

GROOT: A Real-time Streaming System of
High-Fidelity Volumetric Videos MobiCom ’20, September 21–25, 2020, London, United Kingdom

Table 1: Datasets.

Name Dataset Description
Avg # of

Points/Frame
Total #

of Frames
Required

Bandwidth (Gbps)
Avg

Rendering (FPS)

band Panoptic Three people playing instruments 288k 3000 1.03 390
pizza Panoptic Five people standing in a circle 515k 3000 2.31 259

longdress (long) 8i One person moving 860k 300 3.09 176
twopeople (two) 8i Two people moving 988k 300 3.55 126

2 Background
2.1 What is Volumentric Video?
Creation.Volumetric video is composed of a sequence of 3D data al-
lowing the users to move in 6DoF and interact with the 3D contents
from any direction and location. The real-world information can be
turned into a volumetric video by capturing the 3D information in
real-time using multiple RGB-D cameras. It is becoming accessible
for general developers with open-source capture libraries [3, 6]
using commodity depth sensors (e.g., Intel RealSense, Microsoft
Kinect). Specifically, volumetric videos can be generated by combin-
ing multiple calibrated and synchronized RGB-D cameras observing
the scene from various viewing angles. 3D acquisition with RGB-D
cameras is becoming ubiquitous as the quality and resolution of the
RGB-D measurement are improving. The sensors can be deployed
in an everyday environment with minimal cost, including the recent
generation of smart-phones. Consequently, the volumetric video is
expected to be a wide-spread medium to provide a fully immersive
experience allowing the users to walk around and interact with the
3D contents.
Representations. Unlike 2D images that are composed of 2D pix-
els (picture elements), the 3D data can be represented in various
formats, such as splines, implicit surfaces, a grid of voxels (volume
elements), polygonal meshes, or a point cloud. In particular, the raw
measurement is represented as point clouds, which is a list of 3D
points where each point is represented by a 3D coordinate ((x ,y, z),
4 bytes each) and its corresponding attributes such as color values
((R, G, B), 1 byte each) or normals. The representation results in a
linear increase in data size and does not encode any dependency
or correlation between neighboring measurements. While we can
post-process the point cloud data to transform into other data for-
mats for rendering, the point cloud format is popular due to its
simplicity and its flexibility to represent non-manifold structures,
which can better represent the captured real world [50, 52].
Dataset. Human subjects are the most popular content of volu-
metric videos for compelling applications such as telepresence or
virtual events. It is also the most challenging due to the complex
and diverse shapes and continuous movements. Existing state-of-
the-art volumetric videos containing human subjects can be di-
vided into two categories. One is large-scale captures with multiple
people and objects but sparse point density such as the Panoptic
dataset [29]. Another type includes higher quality captures of indi-
vidual people with a much denser number of points, for example,
the 8i dataset [21]. Table 1 describes the characteristics of each
dataset, and we design our system to support both types.

2.2 Streaming Volumetric Video
Streaming volumetric video includes sending, decoding frames of
3D data at a minimum of 30 fps data rate, and rendering in 60 fps.
The data transmission is bounded by the wireless network, and the
decoding and rendering complexity is bounded by the capability
of the mobile device. Compared to conventional video streaming,
where extensive progress has been made with a vast amount of
technologies [26, 32, 46, 48], only a limited number of research is
available for 3D videos. Most of the techniques for conventional
videos cannot be directly applied to the volumetric video because
of the fundamental difference of the 3D frames, namely, the lack of
regularity of data format and the large data size. The recently pro-
posed techniques for 3D data compression suffer from the trade-off
between the compression ratio, perceptual quality, and the decoding
latency to meet both the requirement on the network bandwidth
and the mobile processors. We further analyze the existing repre-
sentative techniques for 3D video streaming in the next section.

3 Motivational Studies
The volumetric video needs to be compressed tomeet the bandwidth
requirement. There are two mainstream approaches for compres-
sion: 2D projection-based (Sec. 3.2) and 3D tree-based methods
(Sec. 3.3). The former extracts surface patches from 3D models and
packs them into a 2D frame, whereas the latter directly handles 3D
data with the help of spatial data structures. Both of the approaches
face challenges for volumetric video streaming, mainly due to the
complexity of the 3D data.

3.1 Raw Data Streaming
When the individual frames are in the format of the point cloud, the
data size increases linearly by the number of points. This implies
that with large-scale volumetric captures that may consist of 300k
points to 1M points, the required bandwidth for streaming can vary
from 1.08 Gbps to 3.6 Gbps. Even with the current state-of-the-art
Wi-Fi or 5G network, it is not possible to send the raw data in 30
fps. Therefore, volumetric video compression is necessary.

3.2 2D Projection-based Compression
Representation. There is an ongoing standardization activity in
volumetric video compression by theMoving Picture Experts Group
(MPEG) under the name MPEG V-PCC [24, 50]. The key idea is to
decompose the point cloud into multiple patches based on their
surface normal information and project them onto a 2D image by
dense packing. Then, existing 2D video codecs such as HEVC can
be applied for a high compression rate and real-time decoding. The

MobiCom ’20, September 21–25, 2020, London, United Kingdom Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim

Table 2: Average data size and encoding/decoding latency
with MPEG V-PCC.

Scheme Data Size(MB) Enc(min) Dec(fps)

lossless 1.46M 42 3.2
lossy 0.19M 11 7.28

 0

 2

 4

 6

 8

band pizza long two

C
o

m
p

re
s
s
io

n
R

a
te

Overall
Geometry

Color

(a) Draco.

 0

 2

 4

 6

 8

band pizza long two

C
o

m
p

re
s
s
io

n
R

a
te

Overall
Geometry

Color

(b) PCL.

Figure 2: Compression ratio of baseline systems.

 0
 4
 8

 12
 16
 20
 24
 28

band pizza long two

F
P

S

Draco PCL

(a) Desktop PC.

 0
 4
 8

 12
 16
 20
 24

band pizza long two

F
P

S

Draco
multiDraco
strawmanPCL

(b)Mobile Device.

Figure 3: Decoding performance of baseline systems.

3D geometry can be reconstructed at the client-side with three indi-
vidual streams of images including: 1) a grey-scale image with each
pixel representing the depth value of the points in each patch, 2)
the 2D projected color textures, and 3) the occupancy image where
each pixel has 1-bit information to indicate if the corresponding
pixel is a valid point for reconstruction.
Performance. Since the standardization is in progress, only test
software is available online. We test the performance of the codec
with the datasets in Table 1 on a Desktop computer equipped with
Intel Core i7-8700 3.2 GHz CPU. Table 2 shows the summary of
the performance tested on 30 frames from the longdress dataset.
For lossless compression, an average of 1.46 MB is required per
frame while lossy compression can reduce the size to 190 kB per
frame. The lossy compression significantly reduces the data size by
compressing the projected images with intra- and inter-frame cod-
ing using 2D video codecs. While the encoding speed is very slow,
requiring 11 (lossy) to 42 (lossless) minutes to encode a one-second
video, decoding is relatively fast since it uses conventional 2D video
codecs with hardware acceleration. Recently, results in [49] show
that it can support 30 fps playback of a volumetric video containing
a single person on mobile devices, but the resolution is limited.
Limitations. The 2D projection-based method suffers from sev-
eral limitations, which makes it not applicable for large-scale and
generic point cloud videos. First, sparse and noisy captures in Fig-
ure 1 (a) and (b) cannot be properly encoded with the codec. This is
because it is difficult to extract surface normals from the noisy data.
Also, even when normal patches are generated, the 2D projection is
a collection of sparse points rather than a smooth image of texture.
Next, for complex scenes with multiple objects and people (i.e.,
4 people in Figure 1(c) standing close to each other), multi-layer
projections need to be generated which increases the decoding

Level 0

Level 1

Non-empty Node
Empty Node

Root
Node 1 Node 2

Index 0 1 2 3 …
Node Root Node 1 Node 2 Node 3 …

Occupancy Byte 00100010 00100010 10110000 00010100

Node 3

Level 0Level 1

Level 2

0

1

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

1 1

1 1 1 1 1 1

1 1 1
0

Figure 4: Octree data structure.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

C
D

F

Octree Depth

band
pizza
longdress
twopeople

(a) Number of octree nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

C
D

F

Octree Depth

band
pizza
longdress
twopeople

(b) Decoding latency.

Figure 5: Octree data structure breakdown.

complexity, and the loss of information is inevitable where 2D
projections overlap.

3.3 3D Tree-based Compression
Representation. In order to represent the large volume of 3D data,
kd-tree [16] or octree [35] data structures are used to exploit the
sparsity of the representation. We describe the octree structure
in more detail. (kd-tree is similar, but implemented as a balanced
tree with varying size of nodes, where an octree node creates its
children by uniform partitions.)

Starting from a tight bounding cube of the 3D space as the root
node, octree divides the non-empty nodes recursively into 8 equally-
sized child nodes by dividing each dimension into its half ((1/2)3 =
1/8). As in Figure 4, the occupancy of 8 child nodes is represented as
8 bits of a single byte. Only the nodes that contain points should be
further divided, and empty nodes can be ignored. With the center
value and side length of the parent node, the location and size of
the 8 child nodes can be automatically calculated.

The leaf nodes are where the actual points are saved and the
center values of the leaf nodes approximate the original x ,y, z coor-
dinates. Therefore, the resolution of the point cloud is determined
by the maximum depth of the tree. By traversing towards the leaf
nodes, the octree can represent the point cloud without saving the
individual coordinates. When using this octree data structure to
deliver point clouds, the data structure is represented as a serial
byte stream concatenating the occupancy byte of each octree node
that can simulate the traversal.
Performance. Two of the most commonly used tree-based point
cloud compression libraries are Google Draco [2] and Point Cloud
Library (PCL) [8]. Draco is a state-of-the-art library specialized for
mesh and point cloud compression, while PCL is a generic library
for point cloud processing, which also has compression features.
We first test the performance of Draco and PCL on a desktop server
equipped with Intel Core i7-8700 3.2 GHz CPU. Figure 2 shows that
both Draco and PCL could only reduce the overall data size by a

GROOT: A Real-time Streaming System of
High-Fidelity Volumetric Videos MobiCom ’20, September 21–25, 2020, London, United Kingdom

Octree
Construction

PD-Tree
Generation

Color Attribute
Reordering

(𝑥, 𝑦, 𝑧, 𝑅, 𝐺, 𝐵)

Serializer
Octree

Breadth Bytes

Octree
Depth Bytes

Octree
Color Bytes

ClientServer

Encoder

Interactive
Adapter

Viewpoint
Tracker

GPU
Decoder

(𝑥, 𝑦, 𝑧, 𝑅, 𝐺, 𝐵)

Octree
Breadth Bytes

Octree
Depth Bytes

Octree
Color Bytes

CPU Decoder

Renderer

Figure 6: Groot system architecture.

factor of 3.35× to 4.22×. In particular, the color compression rate is
limited to 1.5×. Furthermore, Figure 3(a) shows that the decoding
speed is below 30 fps for all datasets. Next, wemeasure the decoding
speed on a state-of-the-art smartphone, iPhone XS equipped with
a Hexa-core CPU (2×2.5 GHz Vortex + 4×1.6 GHz Tempest). To
further improve the decoding speed, we apply several existing
optimization techniques such as multithreading and leverage SIMD
CPU architectures supported in most latest smartphones [1, 4]. See
Section 8 for the details of our implementation. Despite the applied
optimizations, the decoding speed is limited to 2 fps to 20 fps, as
shown in Figure 3(b). It is worth noting that multiDraco, which is
Draco with multithreading, cannot ensure stable performance since
the CPU needs to run multiple background jobs for rendering (i.e.,
generating vertex and color buffers for GPU rendering, tracking
device positions, etc.) and wireless networking.
Challenges. While the tree structure efficiently handles the spar-
sity of 3D data and subdivides only the volumes where the point
exists, the irregularity requires traversing the serialized byte stream
and recursively calculating the child node geometry. The exact po-
sitions that represent intermediate nodes depend on the occupancy
of their ancestors, which cannot be parallelized.

Figure 4 shows an example of an octree and the corresponding
occupancy byte stream. The root node occupancy byte (index 0)
shows that it has two child nodes, whose occupancy bytes are the
following two bytes (index 1 and 2). Similarly, the occupancy byte of
child nodes of Node 2 is located after the occupancy bytes of Node
1 child nodes in the bytes stream. This implies that the number of
nodes at each octree depth is determined by the number of occupied
bits among the nodes at the parent-depth, which requires sequen-
tial decoding. Especially with the increasing number of points and
octree depth, the decoding time becomes a bottleneck in the stream-
ing pipeline. When tested on the dataset, it is observed that the
last few octree depths contain the majority of the octree nodes and
therefore is the dominant cause for the decoding latency (Figure 5).
In addition, the tree-based algorithm only considers the geometry
compression of individual frames without color information.

3.4 Summary
Our observations can be summarized as follows.
• MPEG V-PCC has a high compression ratio with a fast decoding
rate but fails to encode generic volumetric videos.

Level 0

Level 1

Maximum Breadth
Depth (𝐷")

Non-empty Node
Empty Node

Root

Level 8

…

Level 9

Maximum Octree
Depth (𝐷#$%)

4 2

25

147
Point 0 Point 1 Point 2

Point
Index 0 1 2 …

ODB 427 424 421 …
OCB rgb rgb rgb …

Node 1 Node 2 Node
Index Root 1 2 …

OBB 00100010 00011100 10110000

Figure 7: Architecture of PD-Tree.

• Octree data structure is efficient in handling and compressing
geometry data. However, the data size and decoding complexity
increase with the depth of the tree and the number of points.

• Existing 3D tree-based open source point cloud codecs suffer
from a low color compression ratio.

4 GROOT System Overview
Based on the observations, we present GROOT, an interactive and
continuous user-adaptive volumetric video streaming system that
enables fast decoding for both geometry and color with our novel
data structure. The proposed system considers the following crite-
ria:
3DDataDelivery.Our primary goal is to deliver volumetric videos
on mobile devices in the form of 3D data without a 2D projection.
This is to support a fully immersive and interactive user experience
for general large-scale 3D scenes and to meet the motion-to-photon
latency (<20ms) requirement of rendering [18].
Real-Time StreamingOverWirelessNetwork.The users should
be able to freely explore the 3D space in an untethered environment
(i.e., without a wired link). Hence, we aim at delivering volumetric
videos over the wireless network to mobile devices in real-time (e.g.,
30 fps).
Interactive Runtime Optimization. We leverage a continuous
and interactive viewpoint adaptation to reduce the data size and
the amount of computation while maintaining the user perception
quality under diverse and dynamic user viewpoint in 6DoF.

4.1 System Architecture
The overall system of GROOT is shown in Figure 6. We first re-
design the codec to enable parallel decoding on mobile devices.
The encoding process includes generating the Parallel Decodable
Tree (PD-Tree) from the original octree structure (Section 5.1). The
proposed PD-Tree represents nodes individually with minimal over-
head, which allows the re-ordering of high-resolution child nodes
and decreases the decoding complexity. This enables fully-parallel
decoding on the mobile device, leveraging the existing rendering
pipeline for point clouds on the GPU (Section 5.3). In addition, the
color information can be significantly compressed by packing the
pixels into an image to maximize the locality of similar color values
(Section 5.2).

In order to further reduce the data size and decoding complexity,
we can apply the two interactive run-time optimizations given the
PD-Tree with minimal overhead. As the server predicts the view-
port from the received viewpoint information, real-time frustum

MobiCom ’20, September 21–25, 2020, London, United Kingdom Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim

(a) Morton ordering (b) Raster order-packed
longdress frame

(c) Morton order-packed
longdress frame

(d) Unsorted (left) and sorted (right) colors
with Morton order packing

Figure 8: Comparison of color packing methods.

culling removes the points not seen by the user (Section 6.1). Also,
we apply resolution adaption depending on the distance between
the 3D content and the user in continuous levels to avoid perceiving
a discrete quality degrade while moving (Section 6.2). The aforemen-
tioned two optimizations can be applied to our encoder in real-time
since the points are individually represented with PD-Tree.

5 Real-time Streaming Pipeline
5.1 PD-Tree-Enabled Encoding
We design a new tree structure named Parallel Decodable Tree, or
PD-Tree, to overcome the limitations of existing octree-based com-
pression and decoding. As shown in Section 3.3, the compression
rate and decoding speed of octree-encoded 3D geometry are throt-
tled by the number of octree nodes residing at the last few depths of
the tree. The PD-Tree overcomes this issue by modifying the octree
data structure to enable fast parallel decoding while it inherits the
benefit of the compression power of the octree structure.

To compose PD-Tree, we first split the octree structure into two
parts at the Maximum Breadth Depth (Db), which is predefined
depending on the dataset. We empirically analyzed that in most
datasets, the decoding speed drastically slows down in the last
three depth layers. Therefore, we set Db = Dmax − 3 where Dmax
is the maximum octree depth. The occupancy bytes of the tree is
serialized and compressed in two different ways as follows.
Octree Breadth Bytes (OBB). Starting from the root of the tree
up to the nodes at Db , we encode the occupancy bytes as Octree
Breadth Bytes (OBB), which is the breadth-first serialization used
in conventional octree-based compression, also shown in Figure 4.
The serialized data, which includes the occupancy bytes of non-
empty octree nodes in the breadth-first order, can be traversed and
decoded into a list of (x ,y, z) coordinates. These coordinates are the
center positions of octree nodes at depthDb , which serve as the root
nodes for the sub-trees representing the deeper depths. Therefore,
the nodes at depth Db has the quantized (x ,y, z) coordinates of the
3D content with the resolution of Db bits.

When occupancy bytes are encoded in the breadth-first order,
the decoding process cannot be fully parallelized as the exact byte
locations of intermediate nodes depend on the number of non-
empty nodes in previous depth layers. However, as analyzed in
Figure 5, the decoding latency for depths smaller than Db is under
20% for all datasets, and the serial decoding latency is negligible.
Octree Depth Bytes (ODB). Instead of sharing the traversal from
their ancestors, the leaf nodes are individually encoded with their

paths from the root of the sub-tree at Db , breaking the dependency.
Octree Depth Bytes (ODB) encode the path to each leaf node with the
concatenation of the occupancy bytes with a single bit set. Figure 7
shows an example of ODB to represent Point 0, 1, and 2, which are
leaf nodes that represent the final location of the points. Point 0, 1,
and 2 are represented by the 7th, 4th, and 1st bit of the occupancy
byte of the common parent node in Level 9. In the same way, the
parent node in Level 9 is represented by the 2nd bit of its parent
node in Level 8, which is represented by the 4th node in its parent
node at Db .

Traversing back down from the node at Db , Point 0, 1, and 2 can
be represented by the three sequences of numbers 427, 424, and 421
reusing the representations of the shared parent node. Since each
number in this representation is an integer value in the range of
0 to 7, the three-number sequence can be encoded into 9 bits (i.e.,
3 bits each). When unpacking a 9-bits sequence back to a 3-byte
representation, it incurred an additional decoding complexity on
the client-side. Thus, we employ 4-bits encoding rather than 3-bits
for faster decoding.

The independent representation allows parallel decoding for
individual points, greatly reducing the decoding latency. Further-
more, it enables sampling and removing of points in real-time for
user-interactive encoding, because the order and density of the leaf
nodes can arbitrarily change within the subtree rooted at a node at
Db .

5.2 Octree Color Bytes (OCB) Compression
We additionally develop the color map encoding technique to fur-
ther reduce the size of the compressed video. The prior techniques
using 3D trees focuses only on compressing geometry, making the
color map size twice bigger than that of geometry information after
the compression. This makes the color map as the new bottleneck
to send volumetric videos. Since PD-Tree enables fast decoding of
the geometry data with a high compression rate, more sophisticated
methods can be applied to color compression while meeting the
real-time requirement of 30 fps. The key idea of our color map
encoding is to compress the color values as 2D pixels of images and
utilize the conventional JPEG compression. Note that the unique
structure of PD-Tree, where the leaf nodes can be processed in
parallel, enables fast and flexible re-ordering of points for the color
map encoding.

The core challenge in the image-based color compression is to put
neighboring points in 3D video contents (having similar colors) in

GROOT: A Real-time Streaming System of
High-Fidelity Volumetric Videos MobiCom ’20, September 21–25, 2020, London, United Kingdom

x y z x y z …
Coarse centers

Color bytes

GPU Thread1 GPU Thread2

Refining Depth Bytes
a b c a b c …

r g b r g b …

Figure 9: GPU-assisted decoding system of GROOT.

the 2D color image. One naive way of packing an image is following
the raster scan order [38], which is a row-by-row scanning of an
image from left to right, for the leaf node colors of the tree. This
yields poor compression because of the abrupt color change in the
vertical direction. [36] uses a similar approach but applies serial
packing within smaller blocks. However, it does not fundamentally
solve the problem of the abrupt color change in the vertical direction.
Instead, we employ the Morton Order [55] to maximize the locality
of adjacent point colors within 8 × 8 pixel blocks, which is the
processing unit for JPEG compression. Figure 8 shows the schematic
of Morton order packing (a) and the packing results with raster
scan (b) and Morton order (c), respectively.

We can further cluster similar colors for a higher compression
rate due to the unique structure of PD-Tree. Leveraging the inde-
pendence of the leaf node representation, the points residing in
the same octree node at Db can be reordered arbitrarily. When the
colors of the points are reordered, corresponding ODB are sorted
accordingly. Figure 8(d) shows the closed-up result before and after
reordering the colors. Reordering generates a smoother pattern of
colors, thus enhancing the compression performance. The image
size for packing can be determined by the final number of points.
In our current system, the image size is chosen between 512×512,
512×1024, or 1024×1024 pixels.

5.3 Low-Latency Parallel Decoder
The decoding complexity of point cloud videos increases with a
larger number of points and octree depth. The current decoding
of the volumetric video is usually processed on the CPU, and the
state-of-the-art CPUs cannot support a decoding rate of 30 fps
for more than 300k points. Therefore, in GROOT, we leverage the
parallel processing ability of the GPU to overcome the limitation.
The encoded bitstream of the PD-Tree includes OBB and ODB, and
the corresponding color information represented with OCB. The
hybrid decoding pipeline utilizes both CPU and GPU on a mobile
platform to reconstruct the 3D point cloud from the compressed
data. First, the CPU parses the header information and handles
the serialized bitstream of OBB. The OCB is executed by the JPEG
decoder with dedicated hardware in commodity mobile devices.
Then, the GPU decodes the ODB to refine the point cloud location
and render them directly in a completely parallel manner.
Frame Structure. Each frame consists of a header and a payload
that has the necessary information for the decoding process. The
header includes the meta information of the frame, such as the
number of final points, length of OBB, ODB, and OCB, and the
coordinate and size of the root node. The payload contains four

separate streams of data, including OBB, ODB, OCB, and lastly, a
list of numbers of leaf nodes that reside in each octree node at Db .
With this information, the leaf nodes of the same sub-tree for ODB
can be pointed to the correct root node coordinates at Db .
CPU Decoder. The CPU first decodes the OBB stream, which re-
cursively computes the child node location until it reaches the
depth, Db . Next, the 4-bit encoding of ODB is decoded to regener-
ate the byte stream that represents each point independently (i.e.,
3 bytes per point, as in Figure 7). The OCB is decoded by the JPEG
decoder [5], and the decoded 2D image is re-ordered by the Morton
ordering, which is saved as a lookup table (LUT), into the original
color stream aligned with the ODB.
GPUDecoder.We include the refinement of ODB within the point
cloud rendering pipeline, which is executed on the GPU. Specifi-
cally, we implement the GPU decoder with the vertex shader, which
is designed to run in parallel on the GPU during the conventional
rendering pipeline. The original rendering pipeline of point clouds
receives an aligned list of vertex and color data and render them
individually on the screen by multiplying the view and projection
matrix within the vertex shader. We implement the decoding of
ODB for individual points within the same vertex shader for syn-
chronized coordinate refinement and rendering.

To utilize the GPU rendering pipeline, the input list has to be
composed of independent representations of points, which are
aligned by a multiple of four bytes, as shown in Figure 9. We re-
arrange the data such that the individual points are composed of
the decoded node location of OBB at depth Db , three bytes of ODB,
and an additional three bytes for unpacked RGB color of OCB. To
meet the 4 bytes memory alignment requirement, we add one-byte
dummy values each. Since the intermediate node locations from
OBB are shared by the leaf nodes of the sub-tree, the locations are
duplicated and aligned with the corresponding ODB information to
create an independent representation of points. The time overhead
incurred by the additional processing is negligible, averaging below
1 ms. Furthermore, the integrated pipeline guarantees that the
vertex and color attributes of the same frame are synchronized,
while having separate pipelines for decoding and rendering will
require explicit synchronization of the two.

6 Interactive User-View Adaptation
Apart from optimizing the underlying codec, additional optimiza-
tion techniques are required to handle high-fidelity volumetric
videos with a large number of points and high resolutions. In this
light, we develop a new interactive user view-adaptation technique,
further reducing the size of the video and improving the decoding
speed.

A similar idea has been adopted for 360◦ video streaming systems
[26, 46] and early approaches of volumetric video streaming such
as ViVo [14]. We are inspired by such prior techniques, but our
adaptation technique is unique in that it enables responsive and
continuous adaptation. This allows the smooth transition of the
scenes when a user takes a different view by moving her head,
which was not possible with prior techniques.

We develop two specific techniques to reduce the number of
points without affecting the perceived quality: i.e., frustum culling
that removes the points outside of the user’s view and depth-based

MobiCom ’20, September 21–25, 2020, London, United Kingdom Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim

View
Frustum

Figure 10: Comparing frustum culling with fixed-size grids
(left, center, 1m×1m×1m, 0.5m×0.5m×0.5m) and hierarchical
culling using the octree structure (right).

sampling that reduces the resolution of far away points. These
techniques are designed based on the advantages of PD-Tree, which
enables fast determination whether a point is in the user’s current
view or not and also direct removal of points from the encoded
stream.

6.1 Frustum Culling
Removing the unseen points from the current user’s viewpoint,
known as frustum culling, is a straightforward optimization tech-
nique to reduce the data size and decoding complexity. However,
the difficulty lies in applying this view adaptation in real-time at
the server since the user viewpoint can change dynamically. The hi-
erarchical structure and the independent representation in PD-Tree
enable this with minimal processing overhead at the server.

Frustum culling is a widely used technique in graphics rendering,
where only the geometry that falls within the 3D viewing frustum is
displayed [13, 17]. Whether or not a point falls in the view frustum
can be determined by the relative position of the point to the view
frustum which is defined as the intersection of half-spaces that
the six planes of the frustum creates. Exhaustive testing for all the
points in the video and removing them from the encoded stream
requires a non-negligible amount of computation. A common way
to accelerate the calculation is using a grid of the sub-volumes
and test the inclusion, similar to 2D video tiles as in Figure 10.
User-adaptive approaches in [27, 42, 43] and ViVo [14] also used
fixed-size 3D blocks. However, since 3D data is sparse, the large
block size will not be able to sufficiently remove unnecessary points,
while small block size will incur a large computation overhead.

Therefore, we utilize the hierarchical structure of PD-Tree for
fast calculation even under a significant motion within the scene of
varying density of points. Starting from the root node of PD-Tree,
we recursively check if the child octree node intersects with the
view frustum. When all of the eight corners of the parent node
are included (or excluded) in the view frustum, the child nodes do
not need further validation. Only when a subset of eight corners is
included, we proceed with the test to its child nodes.

To handle user viewpoint prediction errors, we set a non-zero
threshold for the half-spaces of the frustum to generate a bigger
frustum that includes the actual user view frustum, automatically
creating a margin around the edges of the view frustum. Also,
GROOT sets the maximum depth to 4 or 5 to stop the frustum
culling where the smaller node size has no effect in further re-
ducing the data size and only generates an additional processing
overhead at the server (See Section 8.5 for the analysis). After frus-
tum culling, points that are included in the culled nodes should be

removed from the ODB and OCB streams. Since the points are rep-
resented independently, it is possible to remove the points directly
by indexing the corresponding leaf nodes for each culled nodes.
Therefore, no modification is required on the client-side to decode
the modified frame.

6.2 Depth-based Sampling
Given the list of culled octree nodes at Db , we apply continuous
depth-based sampling to stream only a subset of points from the
list of ODB rooted at Db with minimal impact on the perceptual
quality. The basic intuition is that, with the fixed screen resolution,
the density of observable points at a particular depth is inversely
proportional to the depth of the point. A common way to apply
depth-based sampling is to stop the tree traversal at a particular
octree depth. However, as shown in Figure 5, the number of oc-
tree nodes increases abruptly between a single depth, especially in
the last few depths, which can result in a sudden drop of percep-
tual quality. Also, most existing work such as [27] and [14] uses
fixed-size blocks with predetermined density as in conventional
2D videos [26]. Since the user’s viewpoint is much more diverse
and changes dynamically, using fixed-size blocks can either not
effectively remove unseen points or drop the perceptual quality
significantly.

With PD-Tree, we enable a finer level of density change since
each point is represented independently, and removing a subset of
points does not affect the encoding and decoding pipeline. During
runtime, the sampling density is determined for each node at the
maximum frustum culling depth regarding the depth value of the
center position of the node. However, since each device has dif-
ferent screen resolution and field-of-view, the rendering quality is
not consistent across devices even when the points have the same
depth value. Therefore, we determine the sampling density based
on the depth value in the device-independent Normalized Device
Coordinate (NDC) space, which maps the perspective frustum to a
fixed-size cube. The location of the point in NDC space can be cal-
culated with the model, view, and projection matrix which are con-
tinuously measured on the client device and updated to the server
periodically. For fast and simple sampling, we determine the reso-
lution by rendering or not rendering 1 out of N (= 1, 2, 3, 4, 6, 8, 10)
points generating a gradual resolution change of 12 levels: from
10%, 13%, 17%, 25%, 33%, 50%, 67%, 75%, 83%, 87%, 90%, 100%. Fi-
nally, we divide the cube into 12 sections and allocate the sampling
density, which can maintain sufficient perceptual quality (i.e., SSIM
value of 0.98).

7 Implementation
Client.We implement the GROOT client on iOS devices. We use
continuous camera position tracking results provided by Apple’s
ARKit (camera.viewMatrix() and camera.projectionMatrix()) for the
interactive user-adaptive methods in our system. The client system
consists of three parts: data receiving, decoding, and rendering,
where decoding is further divided into the CPU and GPU decoder.
The data receiver and CPU decoder are implemented in C/C++ for
faster performance. For color bytes decoding, we cross-compile
libjpeg-turbo [5] for iOS and use the C/C++ API rather than using
the JPEG decoding API on iOS to integrate the CPU into a single

GROOT: A Real-time Streaming System of
High-Fidelity Volumetric Videos MobiCom ’20, September 21–25, 2020, London, United Kingdom

 0
 10
 20
 30
 40
 50
 60
 70

band pizza long two

F
P

S

multiDraco

strawmanPCL

GROOT

Figure 11: Overall frame update rate.

 0
 10
 20
 30
 40
 50
 60

band pizza long two

L
a
te

n
c
y
 (

m
s
) Networking Decoding Rendering

Figure 12: End-to-end latency breakdown of GROOT.

 0
 0.5

 1
 1.5

 2
 2.5

 3

band pizza long two

D
a

ta
 S

iz
e

 (
M

B
)

multiDraco

strawmanPCL

GROOT

Figure 13: Overall compression per-
formance of PD-Tree.

 0
 0.4
 0.8
 1.2
 1.6

 2
 2.4
 2.8

band pizza long two

D
a

ta
 S

iz
e

 (
M

B
)

multiDraco

strawmanPCL

GROOT

Figure 14: Average data size of com-
pressed 3D geometry.

 0
 0.4
 0.8
 1.2
 1.6

 2

band pizza long two

D
a

ta
 S

iz
e

 (
M

B
)

multiDraco

strawmanPCL

GROOT

Figure 15: Average data size of com-
pressed color attribute.

module and for faster performance. We implement the GPU decoder
and renderer using Apple’sMetal Framework as a single GPU kernel
function.
Server.We implement the GROOT server on a Linux desktop PC
(Ubuntu 18.04) with all functions written in C/C++. The encoder
can be divided into three modules: PD-Tree generator, OBB and
ODB compressor, and OCB compressor. For the implementation
of the PD-Tree generator, we modify the octree generator from
Point Cloud Library (PCL). OBB and ODB compression and OCB
packing is implemented with C/C++, and we use libjpeg-turbo [5]
for JPEG compression. The runtime server implementation reads
the encoded files without JPEG compression to apply interactive
user-view adaptation directly without decoding the entire file. Our
continuous and interactive user-adaptive methods, frustum culling,
and depth-based sampling are also implemented with C/C++ func-
tions.

8 Evaluation
8.1 Experimental Setup
Dataset. We conducted extensive evaluation using the datasets
in Table 1. Commonly in AR applications, the virtual objects are
anchored on a plane through a plane detection algorithms [41]. For
the consistency of the experiment, we place the volumetric video
contents by anchoring the center of each data on a fixed location.
System.We test the GROOT client on iPhone XS running on iOS
13.1.3, equipped with the Apple A12 Bionic chipset, Hexa-core
CPU (2×2.5 GHz Vortex + 4×1.6 GHz Tempest), and a 4-core GPU
with 4GB RAM. The GROOT server is tested on a desktop PC run-
ning on Ubuntu 18.04 equipped with Intel Core i7-8700 3.2 GHz
CPU. The client communicates with the server over TCP through a
commodity 802.11ac Wi-Fi AP at 5 GHz. The AP is connected to the
server by a 1 Gbps Ethernet cable. The average downlink through-
put is 540 Mbps, which is comparable to the practical performance
of current indoor wireless technologies, as reported in [32].

Baselines. We compare our system to following baseline systems:
1) multiDraco: an optimized version of Draco [2] by applying mul-
tithreading as in ViVo [14]. The maximum number of threads is
fixed as 4 since it showed the best performance.
2) strawmanPCL: an optimized version of PCL [8]. The core func-
tions (i.e., octree-based geometry encoding/decoding and entropy
encoding/decoding for colors) are implemented using SIMD in-
structions for fast vector calculations. For entropy encoding, we
use the Zstandard [11] library, a state-of-the-art data compression
technique, since it can run in real-time on mobile devices while
maintaining the compression rate.

8.2 Overall Performance
We first assess the overall performance of GROOT. Figure 11 shows
the overall frame update rate. The frame update rate is measured
when the next frame is received, decoded, and enqueued into the
frame buffer to be rendered. Due to the sparsity of point clouds, the
system performance can vary depending on the user’s movements.
For example, in the scene of Figure 1(a), if the user focuses on a
single person, the data size can be reduced by a maximum of 3×.
Therefore, we test our system on multiple user view traces, which
cover diverse direction and locations and show the averaged results.
Since user-view prediction is not in the scope of this work, we follow
the results in [14] and assume that it is possible to maintain an
accurate prediction within the window of 200ms (6 to 7 consecutive
frames). GROOT enables a 30 fps or higher frame update rate for
all datasets showing significant improvement from conventional
systems. Other methods could not achieve the real-time frame
update rate due to the complexity in decoding. Furthermore, the
latency breakdown results of GROOT in Figure 12 show that the
decoding latency is well-below 30ms making decoding on mobile
devices no longer the bottleneck for volumetric video streaming.
Also, the rendering latency remains stable as below 10ms to meet
the motion-to-photon latency requirement.

MobiCom ’20, September 21–25, 2020, London, United Kingdom Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim

 0

 0.5

 1

 1.5

 2

7 9

D
a

ta
 S

iz
e

 (
M

B
)

7 8 9 10

long two

Maximum Breadth Depth (𝑫𝒃)

Figure 16: Data size of geometry for
different Maximum Breadth Depth
(Db) for 8i datasets.

 0
 0.1
 0.2
 0.3
 0.4
 0.5

band pizza long two

D
a

ta
 S

iz
e

 (
M

B
) Raster

Morton-U
Morton-S

Figure 17: Data size comparison of
color packing methods.

 0

 10

 20

 30

 40

 50

band pizza long two

F
P

S

multiDraco

strawmanPCL

GROOT

Figure 18: Average decoding frame
rate of GROOT without user view
adaptation.

 0

 10

 20

 30

 40

band pizza long two

L
a

te
n

c
y

 (
m

s
) Overall

OBB
ODB
OCB

Figure 19: Decoding latency break-
down.

 0
 100
 200
 300
 400
 500

band pizza long two

B
it

ra
te

 (
M

b
p

s
) GROOT

GROOT+C

GROOT+C+S

Figure 20: Average bitrate with inter-
active user adaptation.

 0

 0.4

 0.8

 1.2

 1.6

 2

3 4 5 6
 0

 5

 10

 15

 20

 25

D
a

ta
 S

iz
e

 (
M

B
)

L
a

te
n

c
y

 (
m

s
)Latency Accuracy

Figure 21: Performance trade-off for
frustum culling maximum depth.

8.3 Breakdown of PD-Tree-based Compression
In this section, we evaluate each component of our PD-Tree-based
compression scheme. The overall compression performance of PD-
Tree is shown in Figure 13. Even without user view adaptation, the
data size is reduced by 1.7×.
Geometry Compression. Figure 14 shows the average frame size
for the lossless encoding of the geometry. For Panoptic datasets
(band and pizza), the compressed data size of GROOT is smaller
than both multiDraco and strawmanPCL. However, the compressed
geometry of the 8i dataset (longdress and twopeople) exhibits a larger
size than strawmanPCL. This is due to the different characteristics
of the dataset. Panoptic datasets are larger in scale, which means
deeper octree depth, but has less number of points than 8i datasets.
Therefore, the individual representation of points incurs a smaller
overhead. On the other hand, as shown in Figure 5, the 8i dataset
has a sharper curve than the Panoptic datasets. This means that
less number of higher depths in the 8i dataset is the bottleneck
compared to the Panoptic dataset. Therefore, it would be more
effective to increase the maximum breadth depth (Db) for the 8i
dataset and reduce the overhead of the ODB stream. Figure 16
shows the reduced data size when the maximum breadth depth is
increased by 1 for the 8i datasets. Specifically, Db for the longdress
dataset is 7 to encode the last 3 depths as ODB and 8 to encode the
last 2 depths as ODB. In the case of the twopeople dataset, Db is 9
and 10 to make the last 3 and 2 bytes as ODB, respectively.

Despite the variability in the dataset, GROOT still achieves the
best compression ratio when combined with the color compression,
and more importantly,GROOT enables faster decoding and runtime
modification.
Color Compression. We now evaluate the benefits of our color
compression method. Overall, Figure 15 shows that our proposed
method can improve the compression rate by 4.3× to 6.5× compared
to existing methods while maintaining the perceptual quality (See
Section 8.6 for the quality evaluation). Results show that the color

compression ratio is higher in 8i datasets. This is because Panoptic
datasets are lower in resolution compared to 8i datasets and show
less variation in color. Next, we show the effect of the individual
components of our method. In Figure 17, Morton-S is the scheme
used in GROOT, which packs the colors into a 2D image following
Morton ordering and sorts the color to maximize the similarity
between adjacent points. Morton-U is the same as Morton-S except
no sorting is applied, and Raster uses serial packing of the colors
without sorting. It shows that Morton ordering can reduce the
data size by an average of 50 kB and another 10 kB to 50 kB when
sorting is applied. In particular, sorting the colors to maximize the
locality has more effect on the 8i datasets, since they have more
color variations than the Panoptic datasets.

8.4 Performance of Parallel Decoder
Breakdown. Figure 19 shows the decoding latency of each com-
ponent in the decoding pipeline. In general, latency for decoding
ODB and OCB increases linearly with the number of points. How-
ever, the overall decoding latency is not linearly correlated with
the number of points. For sparse and large-scale datasets such as
band and pizza, the decoding latency resides mainly in decoding
the OBB. Since the points are sparsely located, each of the last few
depths of the octree has a number of octree nodes similar to the
number of points. For high-resolution datasets such as longdress
and twopeople, only the last octree depth incurs a non-negligible
decoding latency. In both cases, latency at the last octree depth can
be effectively eliminated to meet the 30 fps frame rate with the
PD-Tree-based decoding.
Resource Utilization.We analyze the resource utilization when
the decoding, rendering, and camera capturing are simultaneously
running as described in Section 7. On a fully charged phone, we play
the longdress video repeatedly, which required the most computa-
tion, for 54, 000 frames (30 minutes video when the frame update
rate is 30 fps). There was an average memory usage of 340 MB, 25%

GROOT: A Real-time Streaming System of
High-Fidelity Volumetric Videos MobiCom ’20, September 21–25, 2020, London, United Kingdom

 0
 5

 10
 15
 20
 25

band pizza long two

L
a
te

n
c
y
 (

m
s
) Culling

Sampling
Encoding

Figure 22: Server process-
ing overhead for interac-
tive user adaptation.

 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

pizza long

S
S

IM

Raster

Morton-U

Morton-S

Figure 23: SSIM value com-
parison of color packing
methods.

CPU utilization, and the battery level dropped to 86%. The energy
consumption was partly because of the rendering and the back-
ground jobs (i.e., camera position tracking, camera frame capturing)
rather than just our parallel decoder. When we only ran the two
components without our decoder in the same setting, the battery
level still dropped by 7%.

8.5 Performance of Interactive User
Adaptation

Comparison with fixed-size blocks for frustum culling. We
compare our adaptive frustum culling technique to fixed grid size
methods used in most existing methods such as ViVo [14]. Figure 21
shows the results of the pizza dataset, which is the largest in scale
and consists of the most number of people and objects. In general,
using a smaller grid size can more effectively remove unnecessary
points resulting in smaller data size. However, when the frustum
depth increases from 5 to 6, the average frame size reduces by only
80 kB, while the latency increases by 7ms. The results show that
the design choice of GROOT detailed in Section 6.1 can effectively
reduce the data size with small grid sizes while maintaining a low
processing overhead at the server.
Server-side processing overhead. We measure the overall pro-
cessing overhead at the server in terms of latency to apply inter-
active user adaptation, which includes frustum culling, sampling,
and encoding of each frame, in runtime. Figure 22 shows the la-
tency for each component. The results show that even without
pipelining the steps, runtime adaptation is possible within 30 fps.
For large scale datasets such as band and pizza, the frustum culling
latency is dominant since it is larger in scale with multiple peo-
ple and objects. In longdress and twopeople datasets, the encoding
latency is dominant since it has more number of points resulting
in a bigger color image to compress. We note that the encoding
latency can be further improved by using dedicated hardware for
JPEG compression. In conclusion, since the user-adaptive methods
can be applied in runtime with minimal overhead, generating and
storing pre-encoded files for fixed-size grids as in [14, 43] or in
conventional video streaming systems is not necessary.

8.6 Perceptual Quality of Color Compression
Color Comparison to baselines.We measure the PSNR per YUV
component when color attributes are encoded with the same bit
rate to compare the performance of OCB compression to the base-
line methods. We calculate the metric based on the definition in the
released MPEG standard [28] and the implementation of [47]. Re-
sults showed that GROOT achieves a higher PSNR value of 36.4dB,

Table 3: SSIM values of GROOT with interactive user adapta-
tion.

Dataset band pizza longdress twopeople

SSIM
0.9852
±0.0043

0.9880
± 0.0064

0.9898
±0.011

0.9767
±0.0037

45.6dB, and 43.5dB for each YUV component while Google Draco
and PCL achieved 29.7dB, 39.4dB, and 38.1dB on average.
Effectiveness of color reordering and Morton coding. Next,
we use the SSIM metric [59] to measure the perceptual quality of
the 2D projected and rendered view of the 3D content on a mobile
device to evaluate the effect of color reordering and Morton coding.
In Figure 23, each Morton-S, Morton-U, and Raster are the same as
indicated in Section 8.3 for Figure 17. The results show that the
SSIM value can be significantly improved with Morton ordering
and the color sorting also improves the perceptual quality. Note
that results for band and twopeople were omitted since they had
similar results to pizza and longdress, respectively.

The reason behind the improvement of the perceptual quality
with Morton ordering is because 2D image compression applies
frequency-domain color quantization on pixel blocks (i.e., 8×8 pix-
els). This results in a blur effect on the final image. When packing
the color values pixel by pixel, rather than as a texture, the blurring
effect mixes the color between adjacent pixels in a block, which
may have very different colors. Following the Morton ordering, the
distortion can be minimized by maximizing the probability of adja-
cent points in a block to have similar colors. For the same reason,
sorting the colors to further maximize the locality of similar colors
helps improve the quality.

8.7 Perceptual Quality of Interactive User
Adaptation

We evaluate the impact of our interactive user adaptation methods,
frustum culling and depth-based sampling. We play the videos on a
smartphone and capture the rendered screen to measure the SSIM
value. Results in Table 3 show that there is a minimal impact on the
perceptual quality maintaining a high SSIM value of over 0.98 for all
datasets. The frustum culling method does not affect the perceptual
quality at all since it only removes the points that are not rendered
on the screen. As shown in Figure 20, depth-based sampling has
a less impact on the bitrate compared to frustum culling. This is
because sampling is not applied as aggressively to maintain the
SSIM value. Depending on the requirement of the user, it is possible
to apply further sampling for acceptable quality.

9 Discussion
Interframe Compression. The current version of GROOT does
not include inter-frame compression. Inter-frame compression is
challenging in 3D volumetric videos since there is no adjacency
information between the points. Thus, they should be processed
individually. Some prior work modified the octree structure to
reuse the serialized byte stream of previous frames [30]. Another
approach in [37] extracts a rigid transformation between two sub-
sets of points of consecutive frames using the Iterative Closest
Point (ICP) algorithm [58]. Even though it can reduce the data size,

MobiCom ’20, September 21–25, 2020, London, United Kingdom Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim

the complexity of the decoder increases. Utilizing the independent
representation of GROOT, we plan to develop inter-frame compres-
sion by applying existing solutions and adopting recent studies in
deep learning, which can generate 3D motion vectors for individual
points [33].
Quality Metric.We have used the most common quality metrics
of 3D point clouds for the quality assessments. However, most of
the quality metrics are simply an adaptation of the existing 2D
video quality metrics, which does not explain the unique character-
istics of 3D data. For example, there are various ways of rendering
point clouds. In this work, we used a fixed-size square to represent
individual points. However, using surface splatting [60] or adaptive
point sizes can further reduce the number of necessary points while
maintaining the user perceptual quality. Furthermore, the distance
of the 3D data from the user and the scale can also affect the per-
ceptual quality. Therefore, it would be necessary to develop a new
subjective and objective quality metric specifically for point clouds
taking account of the various rendering options and the dynamic
user movements.
Video Content Adaptation. On top of our depth-based sampling
scheme, more sophisticated techniques can be applied. A popular
approach in processing volumetric videos in the graphics field is to
focus on the face and the hands since they have a higher impact on
the visual perception quality [44]. Adopting this concept to volu-
metric video streaming systems would be able to further reduce the
bandwidth consumption without sacrificing the perceptive visual
quality. We can also consider applying different sampling rate de-
pending on the movement of the content or the luminance changes
as in [25]. It will be possible to directly apply any optimization
schemes to GROOT, since the PD-Tree structure allows the indi-
vidual points to be removed, reordered, or manipulated without
having to modify the decoder.
Head-mounted Displays (HMDs). In this work, we used smart-
phones with 2D displays as primary client devices. In order to
provide the users with a more immersive experience, using head-
mounted displays such as Oculus VR, Microsoft Hololens or Magic
Leap can be more plausible. However, current commercially avail-
able devices still suffer from limited field-of-view and resolution,
which makes it difficult to achieve the same perceptual quality as
smartphone displays. Since there are active research and product
development on next-generation devices, we plan to further explore
volumetric video streaming for HMDs. Furthermore, reducing re-
source utilization is much more important since HMDs confront
tighter power and thermal constraints.

10 Related Work
Mobile 2D and 360◦ Video Streaming. There have been prior
works that aim at streaming 2D or 360◦ videos on mobile devices.
To stream high-resolution videos under limited network bandwidth,
existing approaches dynamically adapt the video bitrate [31, 51], or
divide the video into spatial blocks (tiles) and selectively stream the
ones included in the user’s field-of-view [15, 26, 34, 40, 46]. However,
the existing techniques cannot be directly applied to volumetric
videos since 3D data is inherently different from 2D videos. Unlike
2D videos, where the consecutive frames are the same size and thus

can be divided into equal-sized tiles, it is difficult to divide the 3D
data into equal-sized blocks since the number of points and the
location of the occupied grid differs every frame.
Volumetric Video Compression. A large number of approaches
have been made to compress the data size of volumetric videos [19,
20, 23, 53, 57]. Most work focuses on the compression rate rather
than enabling real-time decoding, especially on resource-constrained
mobile devices. There are also active standardization movements by
MPEG [28, 50]. Since the finalization of the standards is expected
in the near future, it would also be an interesting research direction
to apply our user-adaptive methods. Currently, as far as our knowl-
edge, there are a limited number of studies in the system design for
real-time volumetric video streaming of generic point cloud videos
for mobile devices. Since the latest commercial wireless technolo-
gies such as 802.11ad and 5G exhibit compelling performances, it
is becoming more important to balance the trade-off between the
network latency and the resource utilization on mobile devices for
decoding.
Volumetric Video Streaming. There are some recent attempts in
volumetric video streaming. Nebula [45] proposed the concept of
an edge-assisted volumetric video system where the edge server
decodes the 3D data and generates a 2D video for the mobile device.
More recently, ViVo [14] uses Google Draco as the underlying
codec and applies visibility-aware optimizations to enable real-
time streaming. It well supports small-sized videos but is not easy
to scale due to the inherent limitations of Draco as described in
Section 3.3. [43] also applies user-adaptive optimizations similar
to ViVo and [54] proposes a DASH-compliant volumetric video
streaming system. GROOT is a novel system that enables real-time
volumetric video streaming on mobile devices, especially for the
large-size high-fidelity videos with continuous and interactive user-
view adaptation tightly coupled with the compression scheme.

11 Conclusion
We presented the design and implementation of GROOT, a mobile
volumetric video streaming system. With the novel PD-Tree data
structure, GROOT enabled real-time streaming at a 30 fps frame
rate with minimal memory usage and computation for decoding,
which was the bottleneck of the streaming pipeline. Specifically, we
modified the conventional octree to introduce the independence of
leaf nodes, which enabled the parallel decoding of highly irregular
3D data. Leveraging the unique advantages of our PD-Tree, we also
developed a suite of techniques to compress color information and
filter out and sample 3D points outside of a user’s view, which could
further minimize the data size and the decoding cost. With the pro-
posed techniques, GROOT achieved faster frame rates in streaming
high-fidelity volumetric videos to mobile devices compared to any
previous methods.

Acknowledgments
We sincerely thank our anonymous shepherd and reviewers for their
valuable comments. This work was supported by the New Faculty
Startup Fund from Seoul National University and the National
Research Foundation of Korea (NRF) grant (No. 2019R1C1C1006088).
Youngki Lee and Youngmin Kim are the corresponding authors of
this work.

GROOT: A Real-time Streaming System of
High-Fidelity Volumetric Videos MobiCom ’20, September 21–25, 2020, London, United Kingdom

References
[1] ARM Neon. https://www.arm.com/why-arm/technologies/neon.
[2] Google Draco. https://google.github.io/draco/.
[3] Intel LibRealSense. https://github.com/IntelRealSense/librealsense.
[4] iOS SIMD. https://developer.apple.com/documentation/accelerate/simd.
[5] libjpeg-turbo. https://libjpeg-turbo.org.
[6] LiveScan3D. https://github.com/MarekKowalski/LiveScan3D.
[7] Point cloud compression. https://mpeg.chiariglione.org/standards/mpeg-i/point-

cloud-compression.
[8] Point Cloud Library (PCL). https://github.com/PointCloudLibrary/pcl.
[9] Volumetric video market by volumetric capture (hardware (camera processing

unit), software, and services), application (sports, events and entertainment, med-
ical, signage, education training), content delivery and region - global forecast to
2025. https://www.marketsandmarkets.com/Market-Reports/volumetric-video-
market-259585041.html.

[10] What a 5g world could look like: 3d holograms, faster ai and new security
concerns. https://www.cbsnews.com/news/what-a-5g-world-could-look-like-
3d-\holograms-ai-new-security-concerns/.

[11] Zstandard. http://www.zstd.net/.
[12] S. Aggarwal, A. Thirumurugan, and D. Koutsonikolas. A first look at 802.11ad

performance on a smartphone. In Proceedings of the 3rd ACM Workshop on
Millimeter-Wave Networks and Sensing Systems, mmNets’19, pages 13–18, New
York, NY, USA, 2019.

[13] U. Assarsson and T. Moller. Optimized view frustum culling algorithms for
bounding boxes. Journal of Graphics Tools, 5(1):9–22, 2000.

[14] Y. L. B. Han and F. Qian. Vivo: Visibility-aware mobile volumetric video stream-
ing. In In The 26th Annual International Conference on Mobile Computing and
Networking (MobiCom), 2020.

[15] G. Baig, J. He, M. A. Qureshi, L. Qiu, G. Chen, P. Chen, and Y. Hu. Jigsaw: Robust
live 4K video streaming. In Proceedings of the 25th Annual International Conference
on Mobile Computing and Networking, 2019.

[16] J. L. Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509–517, Sept. 1975.

[17] J. Bittner, V. Havran, and P. Slavik. Hierarchical visibility culling with occlusion
trees. In Proceedings. Computer Graphics International (Cat. No.98EX149), pages
207–219, 1998.

[18] E. Cuervo, K. Chintalapudi, and M. Kotaru. Creating the perfect illusion: What
will it take to create life-like virtual reality headsets? In Proceedings of the 19th
International Workshop on Mobile Computing Systems Applications, HotMobile’18,
pages 7–12, New York, NY, USA, 2018. Association for Computing Machinery.

[19] R. L. de Queiroz and P. A. Chou. Compression of 3d point clouds using a
region-adaptive hierarchical transform. IEEE Transactions on Image Processing,
25(8):3947–3956, 2016.

[20] R. L. de Queiroz and P. A. Chou. Transform coding for point clouds using a
gaussian process model. IEEE Transactions on Image Processing, 26(7):3507–3517,
July 2017.

[21] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou. 8i voxelized full bodies - a vox-
elized point cloud dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG)
input document WG11M40059/WG1M74006, January 2017.

[22] D. C. Garcia and R. L. de Queiroz. Intra-frame context-based octree coding
for point-cloud geometry. In 2018 25th IEEE International Conference on Image
Processing (ICIP), 2018.

[23] D. C. Garcia and R. L. de Queiroz. Intra-frame context-based octree coding
for point-cloud geometry. In 2018 25th IEEE International Conference on Image
Processing (ICIP), pages 1807–1811, 2018.

[24] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai. An
overview of ongoing point cloud compression standardization activities: video-
based (v-pcc) and geometry-based (g-pcc). APSIPA Transactions on Signal and
Information Processing, 9:e13, 2020.

[25] Y. Guan, C. Zheng, X. Zhang, Z. Guo, and J. Jiang. Pano: Optimizing 360◦ video
streaming with a better understanding of quality perception. In Proceedings of
the ACM Special Interest Group on Data Communication, SIGCOMM’19, pages
394–407, New York, NY, USA, 2019. Association for Computing Machinery.

[26] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han. Rubiks: Practical 360-degree
streaming for smartphones. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services, 2018.

[27] M. Hosseini and C. Timmerer. Dynamic adaptive point cloud streaming. In
Proceedings of the 23rd Packet Video Workshop, 2018.

[28] E. S. Jang, M. Preda, K. Mammou, A. M. Tourapis, J. Kim, D. B. Graziosi, S. Rhyu,
and M. Budagavi. Video-based point-cloud-compression standard in mpeg: From
evidence collection to committee draft [standards in a nutshell]. IEEE Signal
Processing Magazine, 36(3):118–123, 2019.

[29] H. Joo, T. Simon, X. Li, H. Liu, L. Tan, L. Gui, S. Banerjee, T. S. Godisart, B. Nabbe,
I. Matthews, T. Kanade, S. Nobuhara, and Y. Sheikh. Panoptic studio: A massively
multiview system for social interaction capture. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017.

[30] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and E. Steinbach. Real-
time compression of point cloud streams. In 2012 IEEE International Conference
on Robotics and Automation, 2012.

[31] J. Koo, J. Yi, J. Kim, M. A. Hoque, and S. Choi. REQUEST: Seamless dynamic
adaptive streaming over http for multi-homed smartphone under resource con-
straints. In Proceedings of the 25th ACM international conference on Multimedia,
2017.

[32] Z. Lai, Y. C.Y. Hu, Y. Cui, and N. D. L. Sun. Furion: Engineering high-quality
immersive virtual reality on today’s mobile devices. In Proceedings of the 23rd
Annual International Conference on Mobile Computing and Networking, MobiCom
’17, 2017.

[33] X. Liu, C. R. Qi, and L. J. Guibas. Flownet3d: Learning scene flow in 3d point
clouds. CVPR, 2019.

[34] A. Mahzari, A. Taghavi Nasrabadi, A. Samiei, and R. Prakash. Fov-aware edge
caching for adaptive 360 video streaming. In 2018 ACM Multimedia Conference
on Multimedia Conference, 2018.

[35] D. Meagher. Geometric modeling using octree encoding. In Computer Graphics
and Image Processing, 1982.

[36] R. Mekuria, K. Blom, and P. Cesar. Design, implementation, and evaluation of a
point cloud codec for tele-immersive video. IEEE Transactions on Circuits and
Systems for Video Technology, 27(4):828–842, 2017.

[37] R. Mekuria, K. Blom, and P. Cesar. Design, implementation, and evaluation of a
point cloud codec for tele-immersive video. IEEE Transactions on Circuits and
Systems for Video Technology, 2017.

[38] N. Memon, D. L. Neuhoff, and S. Shende. An analysis of some common scanning
techniques for lossless image coding. IEEE Transactions on Image Processing,
9(11):1837–1848, 2000.

[39] A. Narayanan, E. Ramadan, J. Carpenter, Q. Liu, Y. Liu, F. Qian, and Z.-L. Zhang.
A first look at commercial 5g performance on smartphones. In Proceedings of
The Web Conference 2020, WWW’20, pages 894–905, New York, NY, USA, 2020.
Association for Computing Machinery.

[40] A. Nguyen, Z. Yan, and K. Nahrstedt. Your attention is unique: Detecting 360-
degree video saliency in head-mounted display for head movement prediction.
In 2018 ACM Multimedia Conference on Multimedia Conference, 2018.

[41] P. Nowacki and M. Woda. Capabilities of arcore and arkit platforms for ar/vr
applications. In Engineering in Dependability of Computer Systems and Networks,
pages 358–370, Cham, 2020. Springer International Publishing.

[42] J. Park, P. A. Chou, and J. Hwang. Volumetric media streaming for augmented
reality. In 2018 IEEE Global Communications Conference (GLOBECOM), pages 1–6,
2018.

[43] J. Park, P. A. Chou, and J. Hwang. Rate-utility optimized streaming of volumetric
media for augmented reality. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 9(1):149–162, 2019.

[44] G. Pavlakos, V. Choutas, N. Ghorbani, T. Bolkart, A. A. A. Osman, D. Tzionas,
and M. J. Black. Expressive body capture: 3d hands, face, and body from a single
image. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2019.

[45] F. Qian, B. Han, J. Pair, and V. Gopalakrishnan. Toward practical volumetric video
streaming on commodity smartphones. In Proceedings of the 20th International
Workshop on Mobile Computing Systems and Applications, HotMobile ’19, 2019.

[46] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare: Practical viewport-adaptive
360-degree video streaming for mobile devices. In Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking, 2018.

[47] M. Quach, G. Valenzise, and F. Dufaux. Improved Deep Point Cloud Geometry
Compression. arXiv e-prints, page arXiv:2006.09043, June 2020.

[48] R. J. S. Shi, V. Gupta. Freedom: Fast recovery enhanced VR delivery over mobile
networks. In Proceedings of the 17th Annual International Conference on Mobile
Systems, Applications, and Services, 2019.

[49] S. Schwarz and M. Personen. Real-time decoding and ar playback of the emerging
mpeg video-based point cloud compression standard. Technical report, IBC, 2019.

[50] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou, R. A. Cohen,
M. Krivokuća, S. Lasserre, J. L. Z. Li, K. Mammou, R. Mekuria, O. Nakagami,
E. Siahaan, A. Tabatabai, A. M. Tourapis, and V. Zakharchenko. Emerging mpeg
standards for point cloud compression. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 2019.

[51] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. BOLA: Near-optimal bitrate
adaptation for online videos. In IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, 2016.

[52] S. Subramanyam, J. Li, I. Viola, and P. Cesar. Comparing the quality of highly
realistic digital humans in 3dof and 6dof: A volumetric video case study. In 2020
IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 127–136,
2020.

[53] D. Thanou, P. A. Chou, and P. Frossard. Graph-based compression of dynamic 3d
point cloud sequences. IEEE Transactions on Image Processing, 25(4):1765–1778,
2016.

[54] J. van der Hooft, T. Wauters, F. De Turck, C. Timmerer, and H. Hellwagner.
Towards 6DoF http adaptive streaming through point cloud compression. In
Proceedings of the 27th ACM International Conference on Multimedia, 2019.

https://www.arm.com/why-arm/technologies/neon
 https://google.github.io/draco/
https://github.com/IntelRealSense/librealsense
https://developer.apple.com/documentation/accelerate/simd
https://libjpeg-turbo.org
https://github.com/MarekKowalski/LiveScan3D
https://mpeg.chiariglione.org/standards/mpeg-i/point-cloud-compression
https://mpeg.chiariglione.org/standards/mpeg-i/point-cloud-compression
https://github.com/PointCloudLibrary/pcl
https://www.marketsandmarkets.com/Market-Reports/volumetric-video-market-259585041.html
https://www.marketsandmarkets.com/Market-Reports/volumetric-video-market-259585041.html
https://www.cbsnews.com/news/what-a-5g-world-could-look-like-3d-\holograms-ai-new-security-concerns/
https://www.cbsnews.com/news/what-a-5g-world-could-look-like-3d-\holograms-ai-new-security-concerns/
http://www.zstd.net/

MobiCom ’20, September 21–25, 2020, London, United Kingdom Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim

[55] D. W Walker. Morton ordering of 2d arrays for efficient access to hierarchical
memory. The International Journal of High Performance Computing Applications,
2018.

[56] C.-C. J. K. Y. Huang, J. Peng and M. Gopi. Octree-based progressive geometry
coding of point clouds. In Proceedings of the 3rd Eurographics / IEEE VGTC
Conference on Point-Based Graphics, 2006.

[57] K. Zhang, W. Zhu, and Y. Xu. Hierarchical segmentation based point cloud
attribute compression. In 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 3131–3135, 2018.

[58] Z. Zhang. Iterative point matching for registration of free-form curves and
surfaces. Int. J. Comput. Vision, 1994.

[59] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on
Image Processing, 13(4):600–612, 2004.

[60] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques,
pages 371–378, New York, NY, USA, 2001. Association for Computing Machinery.

	Abstract
	1 Introduction
	2 Background
	2.1 What is Volumentric Video?
	2.2 Streaming Volumetric Video

	3 Motivational Studies
	3.1 Raw Data Streaming
	3.2 2D Projection-based Compression
	3.3 3D Tree-based Compression
	3.4 Summary

	4 GROOT System Overview
	4.1 System Architecture

	5 Real-time Streaming Pipeline
	5.1 PD-Tree-Enabled Encoding
	5.2 Octree Color Bytes (OCB) Compression
	5.3 Low-Latency Parallel Decoder

	6 Interactive User-View Adaptation
	6.1 Frustum Culling
	6.2 Depth-based Sampling

	7 Implementation
	8 Evaluation
	8.1 Experimental Setup
	8.2 Overall Performance
	8.3 Breakdown of PD-Tree-based Compression
	8.4 Performance of Parallel Decoder
	8.5 Performance of Interactive User Adaptation
	8.6 Perceptual Quality of Color Compression
	8.7 Perceptual Quality of Interactive User Adaptation

	9 Discussion
	10 Related Work
	11 Conclusion
	Acknowledgments
	References

