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Abstract
We present FarfetchFusion, a fully mobile live 3D telepres-
ence system. Enabling mobile live telepresence is a challeng-
ing problem as it requires i) realistic reconstruction of the
user and ii) high responsiveness for immersive experience.
We first thoroughly analyze the live 3D telepresence pipeline
and identify three critical challenges: i) 3D data streaming
latency and compression complexity, ii) computational com-
plexity of volumetric fusion-based 3D reconstruction, and
iii) inconsistent reconstruction quality due to sparsity of
mobile 3D sensors. To tackle the challenges, we propose
a disentangled fusion approach, which separates invariant
regions and dynamically changing regions with our low-
complexity spatio-temporal alignment technique, topology
anchoring. We then design and implement an end-to-end
system, which achieves realistic reconstruction quality com-
parable to existing server-based solutions while meeting the
real-time performance requirements (<100 ms end-to-end la-
tency, 30 fps throughput, <16 ms motion-to-photon latency)
solely relying on mobile computation capability.

CCS Concepts
• Human-centered computing→ Ubiquitous and mo-
bile computing systems and tools; • Computer systems
organization→ Real-time system architecture; • Com-
puting methodologies→Mixed / augmented reality;
Volumetric models.
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1 Introduction
Live 3D telepresence provides unprecedented immersion
and interactiveness, overcoming fundamental limitations of
prior 2D video-based communication. It captures the user
and surroundings in 3Dmedia format and streams it to the re-
mote user who enjoys the media with 6 Degrees-of-Freedom
(6DoF). There have been early trials to build live 3D telep-
resence systems [28, 43], but use cases are limited to in-
door studios instrumented with many high-cost cameras
and server-grade computers. In this work, we aim to design
a fully mobile live 3D telepresence system for everyday use.
This capability will enable highly immersive co-activity ex-
periences even for physically apart users (e.g., long-distance
couples and families as if they are eating, chatting, or walking
together).

In this light, we present FarfetchFusion, the first mobile 3D
live telepresence system. It enables an end-to-end pipeline
to capture, reconstruct, stream, and render 3D media in real
time, solely based on mobile cameras and computing power.
As the first step, we focus on the 3D face, which is not only
the essential part of interpersonal communication conveying
a multitude of emotions but also one of the most complex
objects for 3D reconstruction.We believe that our system and
the underlying design considerations will be cornerstones
for future mobile 3D telepresence systems (e.g., supporting
other body parts and objects as discussed in Section 10).

Designing our system involves the following challenges.
• Realistic 3D Reconstruction with Mobile Cameras.

Enabling a high level of presence requires a realistic recon-
struction of the user’s face. However, the human face is a
challenging 3D capture and reconstruction target. It consists
of 42 individual muscles that jointly generate intricate, subtle
facial expressions during conversations (especially around
the mouth and the eye regions). Failing to capture these de-
tails can lead to the uncanny valley phenomena, somewhat
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Figure 1: Example results of different 3D reconstruction methods. From left: (a)-(b) input RGB images, (c) geometry
and (d) texture reconstruction result of 3DMM with deep learning-based method [13], (e) point cloud fusion result,
(f) geometry and (g) texture reconstruction result of TSDF-based fusion method [24]

resembling reconstruction results rather generates negative
emotional effects [8].

Mobile deployment complicates the problem in two folds.
First, the number of cameras and resolution is significantly
smaller than in studio settings (e.g., 3 vs. 7, 640×480 vs.
1280×1024 [28]). This results in sparse 3D data due to partial
facial areas out of camera views or inconsistency between
multiple depth camera data. The problem becomes more se-
rious when the face moves quickly and continuously. Such
sparse data leads to significant perceptual quality degrada-
tion (e.g., Figure 1(g)). Second, the 3D data from multiview
depth streams need to be accurately aligned and fused to gen-
erate a smooth surface; even with state-of-the-art deep learn-
ing techniques [13, 25], misalignment occurs and generates
reconstruction artifacts and quality fluctuation (Figure 18).
• High Responsiveness in Mobile Setup. FarfetchFu-

sion have tight latency requirements. First, it should support
less than 100 ms end-to-end latency [28] including face cap-
turing, 3D reconstruction, streaming, and rendering, for high
user responsiveness. Second, each component should achieve
a high throughput (e.g., 30 fps) to capture and reconstruct
subtle motions such as utterance-level mouth movements;
This is challenging because 3D reconstruction alone takes
250 ms even on high-end mobile devices (e.g., iPhone 12 Pro).
Finally, the rendering latency should be much smaller (e.g.,
<16 ms) to update the viewer’s screen upon his viewpoint
change; this is known as motion-to-photon latency, different
from the end-to-end latency. However, even with highly opti-
mized rendering techniques (i.e., raycasting [26] or meshing
and rasterization [35]), the latency takes 100 ms∼180 ms on
mobile GPUs. As such, enabling fully mobile 3D telepresence
requires rigorous end-to-end design and optimizations.

Our key approach to address the challenges is disentangled
fusion (Section 5). It allows our system to utilize the tempo-
rality of 3D face data even under dynamically changing facial
poses and expressions. In particular, it separates the static
part of facial information (‘invariants’) such as the head, fore-
head, and ears from the dynamic part (‘variants’) such as the
mouth and eyes. Then, it combines the invariants first from

multiple frames while additionally fusing only the ‘variants’
from the most recent frames. This provides two benefits: (i)
high reconstruction quality by effectively utilizing spatio-
temporal redundancy in multiview video streams, and (ii)
high computation efficiency by minimizing the redundancy
in processing the ‘invariant’ part.
The key to realizing our approach is aligning the multi-

view RGBD video streams in spatio-temporal axes. However,
this is a non-trivial problem, as finding the correspondence
between multiview RGBD streams of a dynamically moving
face is either computationally heavy or erroneous. Prior reg-
istration techniques such as iterative closest point (ICP) algo-
rithms find accurate alignments minimizing the distance be-
tween two 3D data pairs, but incur significant overhead [60].
Another approach is using facial landmark features for align-
ment [10]. However, the topological inconsistency between
the landmarks with different facial expressions (e.g., different
mouth shapes and moving eyebrows while talking) does not
guarantee accurate alignments [52].
To tackle the challenge, we propose a topologically con-

sistent anchoring mechanism, namely topology anchoring
(Section 6). We are inspired by the 3D Morphable Model
(3DMM)-based method that fits a generic face template to
the target captured face by morphing the shape and texture,
rotating the head direction, and estimating the camera pa-
rameters. We use the generic face template coordinates as
the static anchor space where all input spatio-temporal RGB-
D data should be aligned and integrated. Then, we generate
pseudo-static anchors, which is anchored in the static anchor
space but reflects the dynamic facial expressions of every
input by morphing. This enables the alignment of spatio-
temporal inputs with topologically consistency.
Based on the topology anchoring, we design the entire

telepresence pipeline to realize our approach. Among the
vast design space, we first build the base pipeline based on
the volumetric fusion [24, 39, 40], a representative 3D recon-
struction approach that generates realistic and smooth sur-
faces from multiview RGB-D inputs. Then, we optimize the
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base pipeline to meet 30 fps throughput by enabling spatio-
temporal fusion and rendering. In the optimized pipeline,
the invariants are computed in the anchor space at an offline
phase to remove computational redundancy for the voxels
corresponding to invariant face areas. The pipeline updates
only the voxels for variants at run time while maintaining
smooth boundaries with the pre-computed voxels for in-
variants. It also handles noises in input depth streams and
occlusions, well-utilizing previous reconstruction frames.

Our key contributions are summarized as follows.
• To our knowledge, FarfetchFusion is the first fully mobile
live streaming system for 3D face-to-face telepresence.
• We design a disentangled fusion approach that jointly
tackles the reconstruction quality and latency challenges.
• We implement a prototype of FarfetchFusion with com-
mercial mobile devices and conduct extensive real-world
evaluation with custom collected multiview RGB-D data
in mobile settings both quantitatively and qualitatively.
• We achieve an end-to-end latency of ≈100 ms and meet
the component-wise requirement of 30 fps throughput and
<16 ms rendering latency.

2 Background on Volumetric Fusion
We design our system based on the concept of volumetric
fusion, a representative 3D reconstruction approach that gen-
erates realistic and smooth surfaces from multiview RGB-D
inputs (e.g., KinectFusion [40] and its variants [24, 39, 41]).
We choose this approach to achieve high realism and practi-
cality. Other 3D reconstruction methods such as modeling-
based methods lack realism [11, 13, 32, 46, 50, 51, 57, 58]
or require high quality pre-scanning and compute-intensive
personalizedmodel generation [5, 9]. Most recent approaches
based on neural radiance fields (NeRF) are still limited to
reconstructing static or pre-scanned objects and scenes [7,
15, 21, 37, 45, 53, 61].

2.1 Cameras and Data
Input. Volumetric fusion requires multiview RGB-Depth(D)
data as input for 3D reconstruction. RGB-D data can be easily
acquired from commodity sensors such as Microsoft Kinect,
Intel RealSense, and LiDARs. Many state-of-the-art smart-
phones and tablets are equipped with high-resolution (e.g.,
640x480) time-of-flight (ToF) frontal depth sensors used for
accurate face identification. Users can customize a multiview
capture setup utilizing personal smart devices in any desired
location.
Output. The output of volumetric fusion can be rendered on
head-mounted displays (e.g., Oculus Quest, HTC Vive). Users
can move around freely, viewing the 3D reconstruction from
any viewpoint. 3D data is rendered by generating two 2D
images rendered for each left and right eye. Users can also

view them on 2D displays with a touch or mouse interface
for 6 degrees of freedom (DoF).
Data Representation. The underlying data representation
is 3D voxels (i.e., equivalent to pixels in 2D images), each as-
sociated with a Truncated Signed Distance Function (TSDF)
value and colors. A TSDF value (e.g., float or short) represents
the distance of the voxel to the nearest surface truncated in
the range of [-1,1] (Figure 3). TSDF values of voxels on the
surface are zero, the outside positive, and the inside negative.
The TSDF voxels are stored in a hash data structure due to
the sparse nature of 3D data, rather than a 3D array to reduce
the memory footprint (e.g., 300×300×300 voxels for 1𝑚𝑚 res-
olution, 4 bytes for TSDF value, 3 bytes for RGB colors, 1 byte
for the weight value results in 216 MB per frame) [24, 41].
The hash function maps (x,y,z) positions of voxels to differ-
ent hash entries. Each entry contains a pointer to allocated
voxels with valid TSDF values. This enables compute- and
memory-efficient reconstruction.

2.2 Volumetric Fusion Overview
Volumetric fusion includes multiple stages (Figure 2).
•Multiview Alignment. The first stage is multiview RGB-
D alignment, which consists of feature extraction and reg-
istration. We can use face-specific feature extraction meth-
ods (e.g., landmark detection) for both robustness and ef-
ficiency, especially with recent deep learning-based meth-
ods [13, 25, 54]. The 2D face landmarks are first extracted
from input RGB images. The 2D face landmarks are then
lifted to 3D landmarks using depth images. The 3D landmarks
are used to find the similarity transform parameters (i.e, ro-
tation, translation, scaling) between multiple views [52].
• Fusion. This stage comprises three steps to calculate the
TSDF voxels with the aligned multiview RGB-D: (i) TSDF
voxel reset, (ii) voxel allocation, and (iii) TSDF calculation.

In the first step, we reset the hash data structure managed
for storing TSDF values (i.e., remove all the hash entries
allocated for the previous frame). This avoids the afterimage
effect, traces left from previous frames in the final recon-
struction outcome. Second, the voxel allocation step creates
hash entries only for the effective voxels (i.e., voxels on or
near the face surface). For this, a ray is casted from each pixel
of the RGB-D image using the camera’s intrinsic parameters.
Then, the hash entries are allocated for the voxels intersect-
ing with the ray. This step allows to update useful voxels
only, rather than the entire 3D grid, saving computational
and memory resources by reducing the number of voxels to
process. Finally, for TSDF calculation, each allocated voxel
is filled with a TSDF value. In particular, the TSDF value is
set as the difference between the z-axis position of the voxel
(in the 3D space projected to the camera viewpoint using
the inverse camera projection parameters) and the depth
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Figure 2: Multiple stages of volumetric fusion.

Figure 3: TSDF voxel generation from RGB-D frames.

value. Figure 3 shows an example of calculated TSDF val-
ues. When a voxel has inconsistent TSDF estimation from
multiple views, the values are averaged or aggregated with
different weights using the confidence scores [28].
• Rendering. The final step is rendering the reconstructed
face, using the calculated TSDF values. There are two alterna-
tives, rasterization and raycasting. Rasterization is a highly
optimized rendering method supported by most modern
graphics hardware on mobiles. The method, however, re-
quires the conversion of TSDF voxels to mesh or point cloud.
The conversion can be efficiently done with the Marching
Cubes algorithm [35], but the performance depends on the
number of voxels to process. Raycasting generates the ren-
dered images without converting TSDF voxels to explicit 3D
data representation. It first finds the voxels corresponding
to the surface (i.e., TSDF value closest to zero compared to
nearby voxels), by casting a ray from the user’s viewpoint.
Then, the color information of such found voxels is used to
form the 2D pixels. Here, the performance is affected by the
number of cast rays determined by the rendered image size
and the number of allocated voxels.

3 Baseline Pipeline Design
Many design choices exist to build a telepresence pipeline
with volumetric fusion. This involves i) dividing the volu-
metric fusion stages into the sender and receiver devices and
ii) deciding on a 3D data format to stream. We need to nar-
row down the choices with careful consideration of network
resources and mobile computation power. First, we focus on
the data streaming challenge, which is critical to reducing
the end-to-end latency. We introduce three candidates for
distributing the volumetric fusion components and choose
one baseline. Then, we illustrate the remaining challenges
to achieve high reconstruction quality and efficiency.
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(c) Server-aided Physical Pipeline

(b) Receiver-loaded Physical Pipeline

Figure 4: Variants of physical pipelines for volumetric
fusion-based telepresence.

3.1 Distributed Pipeline Candidates
There are three possible participating devices: i) the sender
mobile device capturing themultiview RGB-D, ii) the receiver
mobile device for rendering, and iii) the (optional) remote
server to aid computing.
Sender-loaded (Figure 4 (a)). In this pipeline, the compute-
intensive multiview alignment and volumetric fusion com-
ponents run on the sender device, and the reconstructed 3D
data is streamed to the receiver. The reconstructed 3D data
is encoded at the sender device, streamed, and decoded at
the receiver device.
Receiver-loaded (Figure 4 (b)). The sender device sends
the multiview RGB-D data, encoded with 2D video codecs, to
the receiver device. The receiver device performs volumetric
fusion and directly renders the 3D results. This pipeline does
not require 3D streaming 3D, but the receiver device runs
the computation-intensive volumetric fusion component.
Server-aided (Figure 4 (c)). We can offload the volumetric
fusion component to a remote server to reduce the mobile’s
computational load. The sender encodes multiple RGB-D
data and streams them to the server. The server performs
volumetric fusion and sends the compressed 3D data to the
receiver. The computation load on the sender and receiver
devices are low. However, streaming 3D data is still required.

3.2 Baseline Selection
We first narrow down the design space to mitigate the net-
working challenge to stream 3D data (and further address
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Table 1: Data rate and encoding/decod-
ing latency for streaming.

RGB-D (Mobile) 3D Mesh (Desktop)
Data
(Mbps)

Enc
(ms)

Dec
(ms)

Data
(Mbps)

Enc
(ms)

Dec
(ms)

7.2 3 5 288 656 248

Table 2: Processing latency (ms)
for multiview alignment stage.

Face
Detection

Landmark
Detection

CPU 6(±0.82) 232(±19.17)
GPU 9(±1.01) 140(±11.43)

Table 3: Processing latency (ms) for
fusion stage.

Scene
Reset

Voxel
Allocation

TSDF
Calculation

CPU 6(±0.82) 62(±10.69) 1524(±264.90)
GPU 46(±4.45) 60(±8.34) <1

computational challenges). We made the design decision un-
der the assumption that the network resources are more
constrained for 3D data streaming than the 3D computation
(with fast-improving neural processors), but other designs
remain to be studied in future systems.
We compare two streaming options: 3D data streaming

(required for sender-loaded and server-aided pipelines) and
multiview RGB-D streaming with 2D video codecs (required
for receiver-loaded one). We use Draco [16], the state-of-
the-art k-d tree-based point cloud data compression library,
and H264 video codecs for multiview RGB-D. The depth
data is quantized into 8 bits and stored in the Y-channel
for YUV420 format-based compression, which is hardware
accelerated on mobile devices. We test them on iPhone 12
Pro and a desktop computer equipped with Intel Xeon Gold
5218 CPU@2.30GHz and 1× NVIDIA RTX 3090 GPU.
Table 1 shows the data rate and encoding/decoding la-

tency for the two streaming options. First, 3D data stream-
ing incurs very high network bandwidth (≈300 Mbps) and
compute latency even on desktop computers, mainly due to
the difficulty of 3D data compression and lack of hardware
support. Recently, numerous attempts improve the perfor-
mance of 3D streaming (e.g., view-adaptive [20, 29, 34, 48],
neural-enhanced [59]). However, it is far from reaching the
performance of 2D video streaming. Cloud-offloaded render-
ing, which renders the 3D data to 2D at the server regarding
the user’s viewpoint and streams 2D videos, is another al-
ternative [17–19]. This is extremely challenging because the
round trip time has to be below 16ms to prevent motion sick-
ness [12]. Multiview RGB-D streaming, however, relieves
such issues as 2D video codecs are highly optimized. The
data rate and compression latency are significantly smaller.

The results show that the receiver-loaded pipeline, which
does not require 3D streaming, is preferable over sender-
loaded and server-aided pipelines. Note that the three pos-
sible pipelines are conceptualized to show the streaming
options, and many variants exist.

4 Challenges
The baseline pipeline has the merits of efficient 3D data
streaming but still involves multiple computational chal-
lenges. In this section, we characterize its performance in

Table 4: Processing latency (ms) for rendering stage.

Raycasting (per view) Mesh-based rasterization

Visibility
Check

Depth
Estimation

Cast Ray &
Rendering

Mesh
Generation Rasterization

CPU 4(±0.41) 17(±1.87) 599(±63.17) 2254(±273) −
GPU 3(±0.04) 11(±1.11) 31(±3.69) 183(±17.79) <2
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terms of latency and reconstruction quality to discover the
remaining challenges in the system design.Wemeasure them
all on iPhone 12 Pro.

4.1 Latency
Multiview Alignment. Table 2 shows the latency break-
down. The face and landmark detection is the main bottle-
neck taking 149 ms to process three multiview input RGB
images. We use state-of-the-art deep learning models for
face detection [3] and face landmark detection [13]. The
two remaining components, 2D-to-3D lifting and similarity
transformation, incur negligible latency.
Fusion. As shown in Table 3, the fusion stage takes a total
latency of ≈2 seconds on the CPU and ≈106 ms on the GPU.
The performance breakdown shows that the main bottleneck
is the voxel resetting and allocation stage, mainly because
of the large number of voxels to process. One method to
reduce the voxel allocation latency is to preallocate all the
voxels in the bounding box that tightly fits the input data
and reuse the allocation for subsequent frames. However,
this results in the increase of TSDF calculation time as it
significantly increases the number of voxels to evaluate, as
shown in Figure 5. This implies that we should eliminate
the voxel allocation and resetting latency by preallocation.
However, the number of voxels to process in runtime should
be minimized.
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Rendering. Table 4 shows that both methodologies fail to
achieve the tight latency requirements. First, the total latency
for raycasting is 45 ms per each 640×480 view (i.e., 90 ms for
the left and right eyes). Even when the visibility check and
depth estimation results are shared between the two views,
the total latency of 74 ms exceeds the <16 ms motion-to-
photon latency requirement. The mesh-based rasterization,
on the other hand, enables real-time rendering (i.e., < 2 ms
latency) independent from the mesh generation throughput.
However, mesh generation latency is proportional to the
number of voxels, as shown in Figure 6. The latency easily
exceeds 33 ms (i.e., the 30 fps camera source frame latency)
even with 100k voxels and becomes as high as 180 ms for
realistic rendering (e.g., 1M voxels).

4.2 Reconstruction Quality
There are two factors that affects the reconstruction quality:
i) inaccurate multiview alignment and ii) temporal fluctua-
tions from missing or noisy RGB and depth data.
Multiview Alignment.We can leverage robust facial fea-
tures for alignment, but the accurate alignment is not straight-
forward due to the following challenges: i) lightweight land-
mark detection models for mobile device suffers from fre-
quent errors that leads to inaccurate alignment results, and
ii) more accurate model still suffers from finding the accurate
alignment due to the detection inconsistencies across multi-
ple views. Figure 18 shows the failure cases of lightweight
landmark detection and multiview inconsistencies.
Temporal Fluctuations. Our experiments show that three
cameras are sufficient to capture the majority of the face re-
gions. However, the reconstruction quality suffers from tem-
poral fluctuations. The main cause is the continuous move-
ments of the face, which induces partial occlusions leading to
missing depth data. Especially the region between the nose
and the cheeks suffers from frequent occlusions (Figure 1(g)).
Additionally, the depth cameras based on Time-of-Flight
(ToF) active sensors suffer from unexpected noises. The fun-
damental reasons behind the noises are not in the scope of
this work. However, we discover that regions with strong
lighting generate noisy data, also shown in Figure 1(g) [4].

5 System Overview
5.1 Design Goals
High Immersiveness. Our primary goal is to enable a live
3D face telepresence system with a high level of immersion
and presence comparable to that of state-of-the-art studio
solutions. To do so, we need both realistic reconstruction
and low end-to-end latency.
Fully Mobile System. We aim to design a plug-and-play
system. We assume no external servers for computation or

any offline user-specific training process with high-quality
sensors (e.g., studio pre-scanning, DNN model training).
System Requirements. As the system consists of multiple
components, we carefully set the three following latency
requirements.

• < 100𝑚𝑠 End-to-End Latency: This refers to the total la-
tency between the source data (sender user’s face) capture
time and the render time of the reconstruction results at
the receiver. This requirement is required so that the users
do not recognize the interaction delay [2, 28].
• 30 fps Throughput: The 3D content at the receiver side
should be updated at the same rate as the input rate at the
sender’s camera. Rapid facial expression changes require
at least 30fps to be captured [47].
• < 16 𝑚𝑠 Motion-to-Photon Latency: This is required to
update the scenes in reaction to the receiver’s 6 DoF view-
point to minimize motion sickness [12]. Note that this is a
different requirement from the above end-to-end latency.

5.2 System Architecture
Figure 7 shows the system architecture of FarfetchFusion.
The sender devices (synchronized over wireless network [1])
capture multiview RGB-D data; we currently use three smart-
phones for our implementation, but other personal devices
(e.g., laptops, tablets, home cameras) can be used in real de-
ployment scenarios. Each sender device performs the front
part of the multiview alignment, including face detection and
topology anchoring-based landmark detection (Section 6).
The results (3D landmarks, head rotation, camera parame-
ters) are concatenated with the encoded RGB-D data (H264
video codec [49]) and individually streamed to the receiver.

The receiver has an offline and online phase to reconstruct
and render the face. In the offline phase, the TSDF voxels
are pre-allocated. Here, invariant facial areas are marked so
that they do not need to be reset or updated across frames.
Then, in the online phase, the TSDF values for variant facial
areas are efficiently calculated and converted to a 3D mesh
to ensure spatio-temporal consistency (Section 7.2). Lastly,
the generated mesh is rotated by the head pose and rendered
to the screen via rasterization.

In our architecture design, wemake a change to the receiver-
loaded pipeline to share the computational load between the
receiver and sender devices while still using 2D encoding for
RGB-D data. In particular, we make the sender device share
the computation for the multiview alignment to lessen the
load on the receiver, which contributes to achieving 30 fps
throughput. Also, we adopt rasterization-based rendering
(enabled with our disentangled fusion approach) to achieve
both 30 fps throughput and <16msmotion-to-photon latency.
The raycasting-based method inevitably drops the output
image resolution to meet the latency.
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5.3 Our Approach: Disentangled Fusion
The core of our approach is to leverage the time-invariant
face structure (the head, ear, and upper forehead) to update
time-variant face regions (eyes and mouth) only and reuse
the voxels with no value updates. This is essential in meet-
ing our latency requirement by significantly reducing the
number of voxels to process (down to 30% of the original).
Our approach is analogous to data or computation caching
methods in 2D videos (e.g., inference result caching in live
video analytics [33, 55], object and background split render-
ing in AR/VR [27, 36]). However, new challenges arise in
reusing the previous computation in the case of unorganized
3D data.

The main challenge lies in accurately determining which
TSDF voxels to reuse from previous frames or to update
newly. This requires precise alignments between consecu-
tive 3D frames, but unlike 2D video frames, accurate and
efficient 3D frame alignments are known to be a challenging
problem. The problem is aggravated with feature-based (e.g.,
face landmarks) alignment since landmarks from dynami-
cally changing facial expressions are topologically incon-
sistent [54]. Furthermore, even after alignment, voxel-wise
computation is still necessary to identify variant TSDF vox-
els from invariants; even for invariants, reusing the previous
results require per-voxel coordinate transformation. This
incurs a significant overhead with an increasing number of
voxels due to limited mobile GPU cache size [22] (Figure 5).

We devise a topology anchoring technique to tackle the
challenges. The key idea is to generate a pseudo-static anchor,
which have the same facial landmark features as the changing
inputs for topologically consistent alignment, but maintains
a consistent head positionThe consistency of the head posi-
tion allows the invariant regions to occupy fixed-position
voxels in the anchor space after alignment. Thus, separating
invariant and variant voxels can be pre-determined offline,
reducing the runtime overhead of allocation and resetting.
Then, only the variant voxels require TSDF value updates
and mesh generation reducing the latency. Additionally, the
invariant voxels and some variant voxels that were not up-
dated can be reused to handle missing or noisy depth data.

6 Topology Anchoring
Topology anchoring requires two features: i) the alignment
between multiview, temporal RGB-D inputs should be based
on topologically consistent features (i.e., pseudo-static an-
chors) for robustness, and ii) finding the alignment should
run in real-time (e.g., 30 fps) on mobile devices.

6.1 Why 3DMM as Topology Anchor?
Pseudo-static anchors are necessary to find accurate spatio-
temporal alignment, which is essential for our disentangled
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Figure 7: System architecture of FarfetchFusion.
fusion approach. Specifically, an intuitive way of temporal
alignment is to use the 3D reconstructed face from the first
and single-view RGB-D data as an anchor. The subsequent
input frames from different views and times can align the
detected 3D face landmarks to the anchor using least-square
rigid alignment algorithms [52]. However, the anchor and
the input frames have landmarks with different topologies
(i.e., dynamically changing eye and mouth movements). It
is theoretically proven that the least-square algorithm guar-
antees accurate alignment only if the two sets of 3D points
are topologically identical [52]. Furthermore, consistency
is not guaranteed for spatial frames even with the same fa-
cial expressions (Figure 8). The landmark detection based on
2D images generates reprojection errors between multiple
views [54].

We realize pseudo-static anchoringwith a differentmethod
inspired by 3Dmorphablemodels (3DMM). 3DMM is a generic
template face model which can be modified by a set of param-
eters to fit user-specific shapes and expressions. Recently,
deep learning-based approaches were proposed to estimate
a set of information to morph the face model to the target
user with high accuracy [11, 13, 32, 46, 50, 51, 57, 58]1. The
information includes i) geometry coefficients, which are used
to represent the unique facial structure of each person and
facial expressions, ii) the head rotation matrix, which rep-
resents the global rigid transformation of the template, and
iii) camera parameters, which are used to project the recon-
structed 3D face into the 2D input space. This means that we
can create a topology anchor customized to the user’s face
shape and dynamic facial expression eliminating the trans-
formation from head rotation and camera projection. Then,
it is guaranteed that the features used for alignment between
the input data and the anchor are topologically consistent.
1These papers refer to this task as 3D reconstruction. Note that the recon-
struction here generates avatar-like results, far from being realistic. We
target realistic reconstruction directly using RGB-D data. Refer to Section 11.
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3DMM-based topology anchoring brings other advantages.
As we use facial landmarks for feature-based alignment, ex-
tracting accurate landmarks is essential. The 3DMM pipeline
can be used as a robust 2D/3D landmark detector, outperform-
ing the performance of 2D-based landmark detection meth-
ods. The aforementioned deep learning-based 3DMM meth-
ods leverage 2D and 3D landmark loss as key component to
improve the morphing quality. The landmark loss refers to
the difference between ground-truth 2D landmarks and the
estimated landmarks from the reconstructed 3DMM model
projected onto the 2D image. Thus, our 3DMM-based topol-
ogy anchoring method does not incur additional overhead
compared to using landmark-based alignments. Lastly, state-
of-the-art 3DMM-based reconstruction methods require only
a single-pass DNN execution (e.g., ResNet50), which can run
in real-time (>30 fps) even on mobile devices. We refer to
this model as 3DMM-DNN hereinafter.

6.2 3DMM-based Topology Anchoring
We detail how we generate the pseudo-static 3DMM anchors
for multiview-temporal alignment. We first find the pseudo-
static anchor’s 3D landmarks by running 3DMM-DNN on
the RGB frame. The 3D landmarks are projected to 2D and
lifted with the depth data to extract the 3D landmarks of
the RGB-D input. These two sets are used for topologically
consistent alignment.
Applying 3DMM-DNN. The output is a set of parameters
including geometry coefficients, head rotation matrix, and
camera projection parameters. The geometry coefficients
are first used to morph the generic 3DMM template to the
target user represented as a mesh. We employ state-of-the-
art solution named DECA [13]. Specifically, DECA is based
on a non-linear 3D morphable face model, FLAME [30], with
linear shape/expression blendshape coefficients and non-
linear joint-wise transformation. It starts from a template
model represented as a mesh with a set of vertices (T ∈
R3𝑁 , 𝑁 = 5023 vertices (𝑥,𝑦, 𝑧)). The linear blendshapes are
first applied to create an offset from the template towards
the target face shape (TS ∈ R3𝑁 ) as

TS = T +

���−→𝛽 ���∑︁
𝑛=1

𝛽𝑛Sn (1)

, where
−→
𝛽 = [𝛽1, 𝛽2, ..., 𝛽���−→𝛽 ���]𝑇 are the shape/expression coef-

ficients, and S = [S1, S2, ..., S���−→𝛽 ���]T ∈ R3N×
���−→𝛽 ��� are the orthono-

mal shape/expression basis vectors. The non-linear joint-
wise transformation includes translation and rotation of four
joints, neck, jaw, and two eyeballs. The translation of the
joints is already modeled by the previous linear blendshapes.
It is calculated by a predetermined joint regression matrix
(J ∈ R𝐾×𝑁 , 𝐾 = 4), which estimates the joint positions
(Jp ∈ R𝐾×3) from the morphed mesh vertices.

Jp = JTS (2)
The joint rotations (JR ∈ RK×3×3), represented as rotation ma-
trices, are predicted as a parameter by 3DMM-DNN included
in the geometry coefficients. As the rotation of the parent
joints affects the child’s joints, the joint transformations are
represented as relative transformations starting from the
global head rotation. Thus, the final transformations are rep-
resented as JT ∈ R(K+1)×4×4, where 𝐾 + 1 includes the global
head rotation and four joints, and the rotations and transla-
tions are represented in homogeneous coordinates. We can
obtain the final vertices of the mesh as

T =WJTTH (3)
, where the skinning blendweightsW ∈ RN×(K+1) calculates
how the joint transformations are applied to the vertices and
TH ∈ R𝑁×4 is the vertices after applying linear blendshapes
(TS) represented in homogeneous coordinates. The weighted
joint transforms (WJT) are 4× 4 transformation matrices for
each vertex (4 × 1 vector). We can obtain the pseudo-static
anchor, which reflects only the facial expressions but not the
global rotation, by applying the inverse of the global head
rotation matrix to the final vertices (𝑇 ).
3DMM 2D/3D Landmark Extraction. The final vertices
are used to calculate the 3D landmarks. Similar to the joint
regression matrix, the landmark embedding information is a
predetermined set of mesh triangle indices and their barycen-
tric coordinates. The 2D landmarks can be extracted by pro-
jecting the 3D landmarks to the 2D image space using the
camera projection parameters also predicted by the 3DMM-
DNN.

Lmesh3D = F (T)BL

L2D = Pcam (Lmesh3D)
(4)

, where F extracts the three vertex coordinates of the in-
dexed mesh triangles with landmarks (F (T) ∈ RA×3×3), BL ∈
RA×3×1 represents the barycentric coordinates, Lmesh3D ∈
RA×3 is the 3D mesh landmarks, Lmesh2D ∈ RA×2 is the 2D
landmarks, and Pcam is the orthographic camera projection
function including scaling and translation.
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Figure 9: Generated mask example for offline disen-
tanglement calculation.

Anchoring. We can now align the input RGB-D data to the
topology anchor using the detected landmarks. We first lift
the 2D landmarks to 3D landmarks using the depth infor-
mation. We refer to this 3D landmark as point cloud land-
mark (Lpc3D), while the landmark directly extracted from the
3DMM as mesh landmark (Lmesh3D). The alignment between
the point cloud and mesh landmarks can be found with the
least-square estimation algorithm [52], with a higher guar-
antee of topological consistency as they share the same 2D
landmarks. Finally, the transformed RGB-D data can be cal-
culated as

P = P−1head (P
−1
cam (A(PRGB−D))) (5)

, whereA is the alignmentmatrix between Lpc3D and Lmesh3D,
P−1cam is the inverse camera projectionmatrix, andP−1head is the
inverse global head rotation matrix. The anchored RGB-D
data can now be utilized for volumetric fusion.

7 Pipeline Design and Implementation
7.1 Offline Disentanglement Calculation
We first conduct a short offline scanning phase to reduce run-
time computation. We preallocate all the voxels that require
TSDF calculation, both invariants and variants determined by
landmark-based masking, to eliminate the per-frame voxel
allocation latency (Table 3). This enables our system to calcu-
late the TSDF values and generate the 3D mesh only for the
invariant regions at runtime. Also, the results are cached and
directly reused in subsequent frames. Eliminating computa-
tion of the invariant regions reduces the number of per-frame
voxels, effectively reducing the latency.
Offline Scanning. During the initialization stage before the
telepresence session starts (e.g., 1∼5 seconds), we capture
the user moving from a neutral facial expression to the one
where one’s mouth and eyes are open to themaximum extent.
Mask Generation We run topology anchoring for every
input frame and generate a region mask. The purpose of the
region mask is to segment the captured face into variant
regions, invariant regions, and interpolation regions. The
interpolation region is an overlapping region between the
variant and invariant to smooth out the boundaries of the
two regions. We reuse the 2D landmarks to easily calculate
the region masks. The variant regions are determined by

struct Voxel{
short sdf;
uint8_t clr[3];from the anchoring transformation matrix
uchar salient;
uchar padding[2]; // for 8 bytes aligned struct

};

a filled polygon using the landmarks of the two eyebrows
and the jaw lines as the contour. We enlarge the polygon
by a percentage to generate the interpolation region (e.g.,
120% enlargement used heuristically). The remaining regions
are determined as the invariants. The region mask is repre-
sented as a single-channel image, the variant regions with a
pixel value of 255, the overlapping regions with 127, and the
invariants with 0 (Figure 9).
Voxel Allocation and Invariant Region Caching. The
generated masks are utilized to pre-allocate the voxels that
require TSDF value calculation. We add an additional salient
variable to the voxel struct to represent which regions the
voxels are included in. During the allocation stage, we set the
salient variable according to the region mask. If the current
voxel is raycasted from the invariant regions, the voxel’s
salient value is set to 0, 1 for the interpolation region, and 2
for the variant region. Voxels included in the variant regions
at least once during this stage are allocated as variants. The
TSDF values of the voxels from invariant regions are pre-
calculated and reused for subsequent frames.

7.2 Spatio-Temporal Fusion
Algorithm 1 shows TSDF calculation procedure for each pre-
allocated voxel in the online phase. If the voxel saliency value
is zero (i.e., included in the static region), the calculation is
skipped and reuses the cached results from the offline phase.
If the voxel is included in the variant region, the voxel SDF
and the color value are updated using the weighted values
of the multiview inputs. Lastly, for the voxels included in
the interpolation regions, the voxel values that were calcu-
lated in the previous frames are interpolated with the current
weighted multiview inputs. We implement this process in a
single GPU kernel function for optimized performance.

Additionally, our pipeline can improve the reconstruction
quality byminimizing temporal fluctuations.We first prevent
false reconstruction from noisy depth data (e.g., compression
artifacts or sensor defects) by adopting the confidence-based
TSDF weighting technique for spatial fusion [28]. Each pixel
𝑖 of the depth frame is associated with a confidence value
(𝑐𝑜𝑛𝑓𝑖 ) calculated by comparing it with nearby pixels as

𝑐𝑜𝑛𝑓𝑖 =𝑚𝑖𝑛(0.001/𝜎𝑖 , 1.0)

𝜎𝑖 =

√︄
1
|𝑁𝑖 |

∑︁
𝑘∈𝑁𝑖

𝑚𝑖𝑛((𝑑𝑖 − 𝑑𝑘 )2, `2)
(6)
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Algorithm 1 Spatio-Temporal TSDF Calculation for Disen-
tangled Fusion
1: 𝑠𝑎𝑙𝑖𝑒𝑛𝑡 ← 𝑣𝑜𝑥𝑒𝑙 .𝑠𝑎𝑙𝑖𝑒𝑛𝑡

2: 𝑡ℎ𝑟𝑒𝑠ℎ ← 𝐶𝑂𝑁𝐹𝐼𝐷𝐸𝑁𝐶𝐸_𝑇𝐻𝑅𝐸𝑆𝐻
3: 𝑠𝑖𝑧𝑒 ← 𝑉𝑂𝑋𝐸𝐿_𝑆𝐼𝑍𝐸
4: if 𝑠𝑎𝑙𝑖𝑒𝑛𝑡 is 0 then return ⊲ invariant region
5: else if 𝑠𝑎𝑙𝑖𝑒𝑛𝑡 is 1 then ⊲ interpolation region
6: 𝑠𝑑 𝑓 ← 𝑣𝑜𝑥𝑒𝑙 .𝑠𝑑 𝑓

7: 𝑐𝑙𝑟 ← 𝑣𝑜𝑥𝑒𝑙 .𝑐𝑙𝑟

8: 𝑠𝑑 𝑓 _𝑐𝑛𝑡 ← 1
9: else if 𝑠𝑎𝑙𝑖𝑒𝑛𝑡 is 2 then ⊲ variant region
10: 𝑠𝑑 𝑓 ← 0
11: 𝑐𝑙𝑟 ← 0
12: 𝑠𝑑 𝑓 _𝑐𝑛𝑡 ← 0
13: for each view input rgb, depth, confidence do
14: 𝑖𝑚𝑎𝑔𝑒.𝑥, 𝑖𝑚𝑎𝑔𝑒.𝑦 ← 𝑣𝑖𝑒𝑤 .𝑚𝑎𝑡 ∗ 𝑣𝑜𝑥𝑒𝑙 .𝑝𝑜𝑠.𝑥𝑦
15: if 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 [𝑥,𝑦] ≥ 𝑡ℎ𝑟𝑒𝑠ℎ then
16: 𝑠𝑑 𝑓 ← 𝑠𝑑 𝑓 + (𝑑𝑒𝑝𝑡ℎ[𝑥,𝑦] − 𝑣𝑜𝑥𝑒𝑙 .𝑝𝑜𝑠.𝑧) ∗ 𝑠𝑖𝑧𝑒
17: 𝑠𝑑 𝑓 _𝑐𝑛𝑡 ← 𝑠𝑑 𝑓 _𝑐𝑛𝑡 + 1
18: if !𝑖𝑠𝐶𝑜𝑙𝑜𝑟 then
19: 𝑐𝑙𝑟 ← 𝑟𝑔𝑏 [𝑥,𝑦]
20: 𝑖𝑠𝐶𝑜𝑙𝑜𝑟 ← 𝑡𝑟𝑢𝑒

21: 𝑣𝑜𝑥𝑒𝑙 .𝑠𝑑 𝑓 ← 𝑠𝑑 𝑓 /𝑐𝑛𝑡
22: 𝑣𝑜𝑥𝑒𝑙 .𝑐𝑙𝑟 ← 𝑐𝑙𝑟

, where 𝑁𝑖 are the 7 × 7 nearby pixels, 𝑑𝑖 , 𝑑𝑘 are the depth
values, and ` is the TSDF voxel size (` = 0.02 in our case).
In FarfetchFusion, we simply ignore depth values with con-
fidence values less than a certain threshold as in [28]. The
reconstruction errors due to missing depth data from occlu-
sions are handled by temporal fusion. As topology anchor-
ing allows accurate temporal alignment, the TSDF values
from even the variant regions of previous frames can also be
reused. Applying this technique without anchoring would
leave a noticeable trace from previous frames. As such, disen-
tangled fusion with topology anchoring reduces the latency
significantly by only processing the variant regions while
improving the consistency of the reconstruction quality.

7.3 Rendering with Cached Mesh
The last stage is rendering with disentangled invariant and
variant regions. The mesh triangles corresponding to the
invariant regions are generated in the initialization stage,
and only the meshes of the variant and interpolation regions
are updated in the subsequent frames. The mesh rendering
pipeline on mobile GPUs takes mesh vertex positions and the
indices of the vertex comprising the triangles as input. The
mesh triangles of the invariant regions are first calculated
in the offline phase and stored in memory. Then, the variant
and interpolation mesh triangles calculated in runtime are

concatenated to the invariants and committed to the render-
ing queue. As the mesh is still in the anchor space without
head rotation, the rendering requires applying the global
head rotation matrix before rasterization with the user’s 6
DoF viewpoint. This can be done with no overhead, as it is
equivalent to multiplying a transformation matrix by the
user’s view matrix.

8 Implementation
Sender. The sender is implemented on iOS with Objective-
C++ and C/C++. The hardware setup for the sender device
is shown in Figure 15. We leverage multiple smartphones
equipped with active depth sensors (e.g., iPhone 12 and 11
pros) to capture multiview RGB-D frames (inter-camera dis-
tance of 15cm and angle of 30◦). We use the Network Time
Protocol (NTP) [1] for multiview camera time synchroniza-
tion. Depth data is captured with the highest supported res-
olution (640×480) with corresponding RGB data. We train
the facial landmark detection model for topology anchor-
ing with PyTorch, convert it to a Tensorflow-Lite model,
and integrate it into the mobile application using the iOS
TensorFlow-Lite C API. For multiview RGB-D frame com-
pression, we use the H264 codec with YUV420 chroma sub-
sampling, which achieves the highest efficiency on commer-
cial mobile phones [14]. For RGB frame compression, we
apply the quantization parameter to 21. For depth frame
compression, we first quantize the frames into 8 bits and
store the data in the Y-channel (UV channels are set to gray).
Receiver. The receiver application is also implemented on
iOS with Objective-C++ and C/C++. It runs on iPhone 13
Pro Max running on iOS 14.7.1 equipped with an A14 Bionic
chipset (Hexa-core CPU (2×3.1 GHz GHz Firestorm + 4×1.8
GHz Icestorm) and a 4-core GPU with 6GB RAM). The mul-
tiview TSDF fusion pipeline is implemented on top of the
InfiniTAM library [44]. The GPU functions are implemented
with the iOS Metal library. The sender and receiver devices
are both connected to Wi-Fi through a commodity 802.11ac
AP at 5 GHz. The average downlink and uplink throughputs
are 102 Mbps and 85 Mbps, respectively.

9 Evaluation
9.1 Experimental Setup
Dataset. As there are no benchmark datasets for mobile 3D
live face telepresence, we collect our custom dataset using
our implementation.We recruit a total of 10 people (5 females
and 5 males, 6 Asians, 3 white, 1 Hispanic, 25-35 age group).
Each person is captured for three sessions in total. The first
session captures various facial expressions by following the
expressions shown in the sample image. In the second and
third sessions, the user is given a set of text paragraphs to
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read out loud while freely moving the head and changing
the facial expressions.
Receiver Baseline. (multiviewFusion): we build a multiview
fusion pipeline based on a state-of-the-art volumetric-fusion
system [24], which is known to achieve real-time perfor-
mance on mobile devices. However, since this system was
initially built for reconstructing static scenes through scan-
ning doing spatial fusion over temporal frames. We directly
extend this system to enable spatial fusion for multiview
RGB-D inputs.
Sender Baselines. The main component of the sender is
the temporal multiview fusion with DNN-based landmark
detectors. Hence, we compare the alignment accuracy and
latency with multiple state-of-the-art deep learning meth-
ods: i) lightweightFusion uses the MediaPipe face landmark
detection model that achieves 100 fps on mobile devices and
ii) modelFusion uses the 3DMM-based landmark detection
model for higher accuracy.

9.2 Overall Performance
Figure 10 shows the end-to-end latency performance of
FarfetchFusion. We achieve all three latency goals: 30 fps
throughput, <16 ms motion-to-photon latency, and <100 ms
of end-to-end latency. Specifically, the latency of the volu-
metric fusion pipeline at the receiver side improved by 6.45×.
The TSDF fusion latency reduced from 60 ms to 8 ms and
the mesh generation latency from 160 ms to 28 ms. We also
improved the perceptual quality. Our user study result shows
that the perceptual quality of FarfetchFusion was noticeably
better than the multiviewFusion baseline, mainly due to the
alignment robustness of our topology anchoring and smooth
surface generation with spatio-temporal fusion.

9.3 3D Reconstruction Quality
9.3.1 Quantitative Analysis
We provide a quantitative analysis of the temporal alignment
accuracy and the effectiveness of spatio-temporal fusion in
filling the missing geometry. Temporal alignment accuracy is
measured by RMSE (mm) between randomly selected two re-
construction results from different time frames. Better tempo-
ral alignment would lead to smaller RMSE values. Figure 12
shows that quantitatively there was minimal difference from
the baselines (modelFusion and lightweightFusion). However,
the qualitative result in the following section shows that
misalignment can lead to perceptual quality degradation.

9.3.2 Qualtitative Analysis
Figure 16 shows the visual example of 3D reconstruction
results of FarfetchFusion and baseline multiviewFusion. Far-
fetchFusion generates noticeably smoother results with less
number of missing regions compared to multiviewFusion

while reducing the computation complexity. The alignment
results are also compared in Figure 18. FarfetchFusion pro-
vides consistent alignment results regardless of facial expres-
sion or head poses while themisalignment frommodelFusion
and lightweightFusion leaves artifacts in the boundaries

9.3.3 User Study

For qualitative analysis, we conduct a user study with our
3D reconstruction results. Through the user study, we aim
to evaluate (i) the overall reconstruction quality of Farfetch-
Fusion, and (ii) the spatio-temporal alignment accuracy.
User Study Procedure.We conducted a user study with 7
users (3 females and 4 males, all in the age group 25-35). We
conducted two sessions per user. Within each session, the
user views the reconstruction results of two different people
from our dataset. Each session was conducted using two de-
vices with different screen sizes: iPhone 13 Max and an iPad
Pro that has a bigger screen. In both sessions, the user views
the 3D reconstruction result in 6 DoF. Each user views four
different rendering options in random order: FarfetchFusion,
multiviewFusion, lightweightFusion, and modelFusion for de-
tailed pairwise comparison. Afterward, the users fill out a
questionnaire asking (i) a pairwise comparison of different
rendering options, (ii) alignment accuracy comparison, (iii)
and ranking of the overall quality.
Results. First, all users reported that the overall reconstruc-
tion results of FarfetchFusion have a much higher quality
compared to multiviewFusion. No user noticed the inconsis-
tency of FarfetchFusion even when the invariant and variant
regions were processed separately. Second, in terms of align-
ment accuracy, the perceptual alignment accuracy of Far-
fetchFusion was the highest from all users compared to the
two baselines. All participants gave the unified opinion that
FarfetchFusion has the most smooth reconstruction with
fewer holes. One participant also commented that the over-
all shape of FarfetchFusion stayed consistent which makes it
look most natural. This was an unexpected benefit of our dis-
entangled fusion approach (i.e., fixing the invariant region).

9.4 Performance of Disentangled Fusion
We conducted an ablation study to show the effectiveness
of the individual techniques in our disentangled fusion ap-
proach. Figure 13 shows the latency breakdown of the 3D
reconstruction stage. Spatio-temporal fusion, only updating
the variant region, reduces the latency by 2.8×. Optimizing
the GPU code by integrating the separate GPU kernels per
view RGB-D frame into a single GPU kernel code improved
the latency by two-folds. The elimination of the prealloca-
tion stage reduced the latency by 20 ms. Note that in the
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Figure 12: Accuracy and latency re-
sult of FarfetchFusion sender.
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breakdown.

multiviewFusion baseline, the elimination of per-view allo-
cation with preallocation rather increases the latency as the
number of allocated voxels is inevitably larger (Figure 5).
Computation caching of the invariant regions was also

effective in the rendering stage as shown in Figure 14. With
caching, the latency could be reduced by 5.7×. Without ap-
plying our technique, the mesh generation stage incurs sig-
nificant overhead in the pipeline taking 183 ms per frame,
which is even heavier than using raycasting.

9.5 Performance on Other Mobile Devices
Figure 17 shows the latency comparison across various de-
vices. The end-to-end latency of FarfetchFusionwas achieved
on iPhone 13 Pro Max, one of the latest mobile devices. The
latency on older mobile devices was higher, however, the
trend shows that future mobile devices would allow Farfetch-
Fusion achieve less than 100 ms end-to-end latency.

10 Discussion and Future Works
Further Quality Improvement. FarfetchFusion achieves
higher perceptual quality compared to the baselines, how-
ever, the reconstruction quality still needs improvement. Far-
fetchFusion fully rely on the quality of the multiview depth
inputs. Thus, the reconstruction fails when the depth data
from multiple views are all ill-captured (e.g., when user ro-
tates the head to extreme angles, inner mouth or detailed
eyeball movements, thin geometries like hair). Leveraging
data-driven generative techniques [15, 61] to overcome these

limitations remains as our future work. There are also possi-
ble additional optimizations to improve the texture quality.
We only use the RGB frames captured with the same res-
olution as the depth frames (640 × 480). Higher resolution
RGB data (e.g., 1920 × 1080) could be utilized. Furthermore,
relighting the face texture regarding the receiver’s lighting
environment can improve the realism and sense of presence.
Extension to Other Body Parts. We plan to extend our
topology anchoring to other body parts and objects as well.
There has been an extensive amount of work in creating
3DMMs for different body parts (e.g., hand, body, hair, ears,
foot). Other objects can also be represented as a global model
(i.e., initial shape) and dynamic deformations. Leveraging
these anchors, the key would be to accurately disentangle
the rigid transformation that can anchor the current input to
the anchor space regardless of movements or deformations.
Extension to AR/VR Devices.We plan to replace the re-
ceiver side device with AR/VR glasses for higher-level of
immersion. Currently, we rely on 2D devices to create high
resolution rendering results. Using AR glasses would be a
practical direction to support bi-directional communication.

11 Related Work
3D Face Reconstruction. There is an extensive amount of
research in 3D face reconstruction. The most representative
ones are modeling-based methods. These methods lever-
age the semantic properties of the face to create a generic
template and fit the template to the target with optimiza-
tions [30]. Recent advancements in computer vision enables
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Figure 15: FarfetchFu-
sion sender prototype.

Figure 16: Left: Subsequent frames represented in
blue and red before and after spatio-temporal fu-
sion, Right: reconstruction result without and with
spatio-temporal fusion (ours).
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Figure 17: Latency on various
mobile devices.
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Figure 18: Qualitative comparison of alignment techniques. A: lightweightFusion, B: modelFusion, Ours: topology
anchoring-based alignment of FarfetchFusion. Best viewed in color.
reconstruction of the shape and facial expressions [11, 32, 46,
50, 51, 57, 58]. Some uses a single RGB input, enabling nu-
merous applications such as real-time emoji generation [23],
video filters for social media, or real-time avatar generation
for future metaverse [31]. However, the reconstruction still
remains to be unrealistic. The reasons are two folds: (i) face
models are represented with a set of finite parameters and
(ii) the modeling is highly affected by the data distribution
including ethnicity, gender, age, etc. Such limitations aver-
age out person-specific details, making the reconstruction
results far from realistic and rather avatar-like (Figure 1(c)
and (d)). Recent works attempt to overcome the problem by
pre-scanning the user’s face in high-performance capture
studios [9] or using mobile sensors [6], but it is nontrivial to
scale them due to costly and time-consuming studio usage or
model training. FarfetchFusion adopt the volumetric fusion-
based reconstruction method to guarantee realism and newly
address computational challenges for mobile deployment.
3D Telepresence Systems. A few immersive 3D telepres-
ence platforms were proposed recently. Google’s Project
Starline [28] is a 3D telepresence booth that enables face-to-
face communications between physically distanced people.
It requires four high-resolution RGB-D cameras and server
computing resources with wired streaming (four NVIDIA
sever-grade GPUs). Pixel codec avatar [9] from Meta Re-
search is a VR-based 3D telepresence system. The runtime
system is based on six infrared cameras equipped on the
VR headset, which is wired to a single server-grade GPU.
However, the realistic reconstruction requires intense offline
user pre-scanning session and personalized model training.
Mobile 3D Reconstruction Systems. Existing mobile 3D
reconstruction systems that leverages TSDF-based volumet-
ric fusion focus on reconstructing static 3D scenes [38, 42, 56].

Therefore, the key focus of this stream of work is finding
robust pose estimation of the scanning mobile camera or
enabling 3D reconstruction with monocular video input.
Mobile 3D Streaming Systems. A line of work supports
lossless depth compression or temporal compression that
minimizes the distortion. However, the compression rate is
yet lower than the high-performance video codecs. The main
challenges of these approaches are the low compression rate
for large-size 3D data and the computational complexity for
encoding and decoding. Recent works aim to tackle these
challenges by viewpoint-aware partial decoding [20] or en-
abling fast parallel decoding using mobile GPUs [29].

12 Conclusion
We presented FarfetchFusion, one of the first fully mobile
end-to-end systems for live 3D telepresence based on an
in-depth analysis of the design space. We proposed a novel
disentangled fusion approach that jointly tackles the realis-
tic reconstruction quality and low end-to-end latency, criti-
cal limitations of existing works. We realized our approach
through topology anchoring, which finds accurate spatio-
temporal alignment of dynamic data to maximize the com-
putation reusability. Our results show that FarfetchFusion
achieves <100 ms end-to-end latency with realistic recon-
struction results.
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