
EagleEye: Wearable Camera-based Person Identification
in Crowded Urban Spaces

Juheon Yi
johnyi0606@snu.ac.kr

Seoul National University
Seoul, Korea

Sunghyun Choi
sungh.choi@samsung.com

Samsung Research
Seoul, Korea

Youngki Lee
youngkilee@snu.ac.kr

Seoul National University
Seoul, Korea

Abstract
We present EagleEye, an AR-based system that identifies missing
person (or people) in large, crowded urban spaces. Designing Ea-
gleEye involves critical technical challenges for both accuracy and
latency. Firstly, despite recent advances in Deep Neural Network
(DNN)-based face identification, we observe that state-of-the-art
models fail to accurately identify Low-Resolution (LR) faces. Accord-
ingly, we design a novel Identity Clarification Network to recover
missing details in the LR faces, which enhances true positives by
78% with only 14% false positives. Furthermore, designing Eagle-
Eye involves unique challenges compared to recent continuous
mobile vision systems in that it requires running a series of com-
plex DNNs multiple times on a high-resolution image. To tackle
the challenge, we develop Content-Adaptive Parallel Execution to
optimize complex multi-DNN face identification pipeline execution
latency using heterogeneous processors on mobile and cloud. Our
results show that EagleEye achieves 9.07× faster latency compared
to naive execution, with only 108 KBytes of data offloaded.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computer systems organization → Real-time sys-
tem architecture.

Keywords
Mobile Deep Learning, Person Identification, Heterogeneous Pro-
cessors, Mobile-Cloud Cooperation, Multi-DNN Execution
ACM Reference Format:
Juheon Yi, Sunghyun Choi, and Youngki Lee. 2020. EagleEye: Wearable
Camera-based Person Identification in Crowded Urban Spaces . In The
26th Annual International Conference on Mobile Computing and Networking
(MobiCom ’20), September 21–25, 2020, London, United Kingdom. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3372224.3380881

1 Introduction
Imagine a parent looking for her/his missing child in a highly
crowded square. In many cases, a swarm of people in front of her/his
eyes will quickly overload cognitive abilities; ourmotivational study

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiCom ’20, September 21–25, 2020, London, United Kingdom
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7085-1/20/09. . . $15.00
https://doi.org/10.1145/3372224.3380881

Figure 1: Example usage scenario of EagleEye: parent find-
ing a missing child. More examples in Section 2.

shows that it takes ≈16 seconds to locate a person in a crowded
scene (See Section 3 for details). An Augmented Reality (AR)-based
service with smart glasses or a smartphonewill be extremely helpful
if it can capture the large crowd from distance and pinpoint the
missing child in real-time (Figure 1). Despite recent advances in
person identification techniques using various features such as
face [14, 55, 67], gait [27, 66] or sound [7, 19], fast and accurate
person identification in crowded urban spaces remains a highly
challenging problem.

In this paper, we propose EagleEye, a wearable camera-based
system to identify missing person(s) in large, crowded urban spaces.
It continuously captures the image stream of the place using com-
modity mobile cameras, identifies person(s) of interests, and shows
where the target is in the scene in (soft) real-time. EagleEye not only
shows a good example of future AR applications based on real-time
analysis of complex scenes, but also characterizes the workload of
future multi-DNN mobile deep learning systems.

Designing EagleEye involves critical technical challenges for
both identification accuracy and latency.
• Recognition Accuracy. Compared to prior systems [60, 61,

73] that aim at identifying 1 or 2 faces in close vicinity (e.g., engaged
in a conversation), the key challenge in building EagleEye is accu-
rately detecting and recognizing distant small faces. In crowded
spaces, individual faces often appear very small, with facial de-
tails blurred out. Recent Deep Neural Network (DNN)-based face
recognition has shown remarkable progress in accurately identi-
fying faces under various unconstrained settings [14, 30, 47] (e.g.,
variations in pose, occlusion, or illumination). However, the state-
of-the-art techniques still fail to provide robust performance for
Low-Resolution (LR) faces. Our study shows that Equal Error Rate,
the value in the ROC curve where false acceptance and false rejec-
tion rates are identical, of the state-of-the-art DNN [14] grows from
9% to 27% when resolution drops from 112×112 to 14×14 (Section 3).

https://doi.org/10.1145/3372224.3380881
https://doi.org/10.1145/3372224.3380881

MobiCom ’20, September 21–25, 2020, London, United Kingdom Juheon Yi, Sunghyun Choi, and Youngki Lee

Figure 2:Multi-DNN face identification pipeline.

• Identification Latency.More importantly, it is challenging to
analyze a crowded scene in (soft) real-time to allow users to sweep
large spaces quickly. EagleEye imposes unique challenges compared
to recent DNN-based continuous mobile vision systems [28, 35, 53,
58, 62, 68, 71]. Firstly, as shown in Figure 2, EagleEye requires run-
ning a series of complex DNNsmultiple times for a single scene: face
detection network once over a scene, our resolution enhancing net-
work (introduced in Section 5.2) and face recognition network per
each face. This is very different from prior systems that run a single
DNN only once over a scene. Secondly, each DNN is highly com-
plex to achieve high accuracy, incurring significant latency. Face
detectors employ feature pyramid [52] which upsamples features in
latter layers and adds up to earlier layers to detect small faces. Also,
state-of-the-art recognizers are heavy ResNet-based. Finally, prior
work mostly downsample the input frames (e.g., 300×300 [22]) to
reduce complexity (this was possible as they analyze a small num-
ber of large, primary objects in vicinity). However, EagleEye should
run the identification pipeline on high-resolution frames to detect
a large number of distant faces that appear very small.

It is highly challenging to run a complexmulti-DNNpipeline over
high-resolution images in real-time. It is not even trivial to simply
port state-of-the-art DNNs tomobile deep learning frameworks (e.g.,
TensorFlow-Lite) due to the limited number of supported opera-
tions. The challenge aggravates considering the execution latency.
For instance, a lightweight MobileNet [31] can only process two
1080p frames per second on high-end mobile GPU (Table 1). Naive
execution of EagleEye’s entire pipeline takes 14 seconds for a scene
with 30 faces (Figure 5). We can consider multithreading or offload-
ing, but they are not also straightforward to apply. Multithreading
degrades performance due to resource contention over limited mo-
bile resources (e.g. GPU, CPU, memory). Also, 3G/LTE network
with low bandwidth is likely the only wireless network available
in crowded outdoor environments, making offloading non-trivial.

To tackle the challenges, we design and develop a suite of novel
techniques and adopt them in EagleEye.
• Identity Clarification Network.We first design a novel end-

to-end face identification pipeline to identify small faces accurately.
Our key idea is to add Identity-Clarification Network (ICN) on con-
ventional 2-step pipeline (detection-recognition) to recover miss-
ing facial details in LR faces, thus resulting in a 3-step pipeline
(detection-clarification-recognition as shown in Figure 2). ICN
adopts a state-of-the-art image super-resolution network as the
baseline and innovates it with specialized training loss functions to

enhance LR faces for accurate recognition; note that prior super-
resolution networks focus on generating perceptually natural im-
ages and fail to preserve identities, making them ill-suited for recog-
nition [48] (See Section 5). Also, ICN enables identity-preserving
reconstruction using reference images (probes) of the target, com-
monly available in our scenarios (e.g., photos of children provided
by parents). We observe that the complexity of LR face recogni-
tion results from accepting positive identities rather than denying
negative identities (see Section 5.2 for details). Thus, biasing ICN
on the target improves LR face recognition accuracy with only a
small increase in false positives. Overall, our ICN-enabled pipeline
improves true positives by 78% with 14% false positives, against the
2-step identification pipeline.
•Multi-DNNExecution Pipeline.Our workload (i.e., running

a series of DNNs multiple times on high-resolution images) requires
a differentiated strategy to optimize the heavy computation. We
develop a runtime system with Content-Adaptive Parallel Execution
to run a multi-DNN face identification pipeline at low latency. The
key idea behind this approach is to divide the high-resolution image
into multiple sub-regions and selectively enable different compo-
nents in the pipeline, depending on the content. For instance, ICN
is only applied to a region with LR faces while the entire pipeline is
not executed for a background region with no faces. Furthermore,
we exploit the spatial independence of face recognition workload
(i.e., identifying faces in different sub-regions does not have depen-
dency) to parallelize and pipeline the execution on heterogeneous
processors on the mobile and cloud. Overall, our technique acceler-
ates the latency by 9.07× with only 108 KBytes of data offloaded.

Our major contributions are summarized as follows:
• To the best of our knowledge, this is the first end-to-end mobile
system that provides accurate and low-latency person identifi-
cation in crowded urban spaces.
• We design a novel face identification pipeline capable of accu-
rately identifying small faces in crowded spaces. By employing
Identity Clarification Network to recover facial details of LR
faces, we enhance true positives by 78% with 14% false positives.
• We design a runtime system to handle the unique workload of
EagleEye (i.e., processing high-resolution images with multiple
DNNs for complex scene analysis). We believe this will be an un-
explored common workload for many mobile/wearable-based
continuous vision applications. We utilize a suite of techniques
to minimize the end-to-end latency to as low as 946 ms (9.07×
faster than naive execution).
• We conduct extensive controlled and in-the-wild study (with
real implementations and various datasets), validating the ef-
fectiveness of our proposed system.

2 Motivating Scenarios
Finding a Missing Child. In crowded squares or amusement
parks, there are many cases where a parent loses track of her/his
child. In such incidents, it is difficult to find the missing child with
naked eyes since she/he becomes cognitively overloaded to identify
many people in vicinity. EagleEye can help the parent: by sweeping
the mobile device to capture the space from distance, it can help
quickly pinpoint possible faces and narrow down a specific area to

EagleEye: Wearable Camera-based Person Identification
in Crowded Urban Spaces MobiCom ’20, September 21–25, 2020, London, United Kingdom

 0

 5

 10

 15

 20

 25

Familiar Unfamiliar

T
im

e
 (

s
)

Low Medium High

(a) Crowdedness (response time).

 0

 5

 10

 15

 20

Familiar Unfamiliar

T
im

e
 (

s
)

Present Absent

(b) Presence vs. absence (response time).

 0

 5

 10

 15

 20

 25

 30

 35

Familiar Unfamiliar

T
im

e
 (

s
)

1 2 3

(c) Number of targets (response time).

 0

 0.2

 0.4

 0.6

 0.8

 1

Familiar Unfamiliar

A
c
c
u

ra
c
y

Low Medium High

(d) Crowdedness (accuracy).

 0

 0.2

 0.4

 0.6

 0.8

 1

Familiar Unfamiliar

A
c
c
u

ra
c
y

Present Absent

(e) Presence vs. absence (accuracy).

 0

 0.2

 0.4

 0.6

 0.8

 1

Familiar Unfamiliar

A
c
c
u

ra
c
y

1 2 3

(f) Number of targets (accuracy).

Figure 3: Human cognitive abilities on identifying faces in crowded scenes: response time and accuracy.

search, so that the parent can find the child before the child moves
to a different place. Similarly, police officers can use EagleEye to
chase criminals in crowded malls, streets, squares, etc.
Children Counting in Field Trips. Teachers in kindergarten
regularly take children out for field trips to catch educationally-
depicting behaviors hardly captured in classroom settings. However,
in reality, teachers spendmost of the time counting children tomake
sure they are in place. EagleEye can be of extensive use to reduce
the cognitive burden for the teachers so that they can focus on the
original goal.
Social Services for Familiar Strangers. EagleEye can be used to
build an interesting social service to connect people. For example, it
can be used to identify familiar strangers (people whom we met in
the past but do not remember the details) to help with interaction;
a person attending a social event can use EagleEye to identify them
and get an early heads-up before they are in close proximity to
avoid embarrassing moments.

3 Preliminary Studies
To motivate EagleEye, we first conduct a few studies to verify (1)
how quickly humans identify face(s) in crowded urban spaces and
(2) whether it is feasible in terms of accuracy and speed to employ
face recognition algorithms to aid humans’ cognitive abilities.

3.1 How Fast Can Humans Identify Faces?
Prior studies report that it takes for humans about 700 ms to detect
a face in a scene [46], and about 1 second to recognize the identity
of a single face image [40]. We extend the experiments to study how
long it takes to identify target(s) in crowded scenes. We first recruit
6 college students (5 males and 1 female, age 24-28) as subjects
for dataset collection, and take videos of them blending inside the
crowd in various urban spaces including college campus, downtown
streets, and subway stations. Next, we recruit 11 students (10 males
and 1 female, age 24-32) who are of mutual acquaintances with
the subjects (denoted as Familiar), and 14 other students (12 males
and 2 females, age 20-26) who have never seen the subjects before
(denoted as Unfamiliar).

In the experiments, the participants are seated in front of the
screen with a similar setup as in [46]. Each participant is first shown
faces of 1 to 3 target identities. Afterwards, a scene image (1080p
resolution) is shown, in which target(s) may or may not exist. The
participant clicks the location in the scene where she/he finds each
target. Response time is measured as the duration between when
the scene is displayed and when the participant finishes identifying
all targets. The scenes are classified into three levels of crowdedness
(examples are shown in Figure 16): i) Low (less than 10 people in
close distance with face sizes at least 30×30 pixels), ii) High (more
than 20 people with face sizes smaller than 14×14), and iii)Medium
(between Low and High). Each participant is shown 5 scenes per
each category (15 in total) and was asked to be as precise as possible.

Figure 3 shows the response time/accuracy results. Our exper-
imental results are summarized as follows (unless specified, the
reported results are on High scenes):
• Overall, it takes 6.37 and 15.83 seconds on average to identify
familiar and unfamiliar faces in crowded scenes, respectively,
showing noticeable cognitive loads.
• It takes longer to identify unfamiliar faces than familiar ones.
• Not only does it take longer to identify a target in more crowded
scenes, but the accuracy also drops (Figures 3(a) and (d)).
• Especially for the Familiar group, it takes longer to confirm
the absence of target than presence. (Figures 3(b) and (e)). We
observe that it is because when participants fail to locate the
target in the scene, they start looking over again multiple times
to confirm their decision.
• It takes longer to identify multiple targets, and accuracy drops
as well (Figures 3(c) and (f)).
The above results clearly show the human’s vulnerability to cog-

nitive overload. While the study was designed as identifying the
target person(s) in a scene image for controllability of the experi-
ment, we conjecture that the cognitive overload will be greater in
real-world settings where the scene does not fit into a single view.

3.2 DNN-Based Face Recognition: Status Quo
Faces in crowded spaces captured from a distance experience high
variations in pose, occlusion, illumination, and resolution, making

MobiCom ’20, September 21–25, 2020, London, United Kingdom Juheon Yi, Sunghyun Choi, and Youngki Lee

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
 A

c
c
e
p

t

False Accept

112x112
56x56
28x28
14x14

Figure 4: Face verification ac-
curacy.

 0

 3

 6

 9

 12

 15

 0 5 10 15 20 25 30

L
a
te

n
c
y
 (

s
)

Number of faces

Figure 5: Latency of face
identification pipeline.

7

(a) 112×112.

8

(b) 56×56.

9

(c) 28×28.

10

(d) 14×14.

Figure 6: Feature map visualization for varying resolutions
(points with same color represents same identity).

accurate recognition very challenging. While prior algorithms have
achieved robust performance (e.g., over 90% accuracy) for the first
three [14, 30, 47], the Low-Resolution (LR) face recognition problem
has not been fully studied yet.

We conduct a study to analyze the difficulty of LR face recog-
nition. We first train ResNet50 with ArcFace loss [14] on MS1M
dataset [25], and test performance on 50 identities in VGGFace2 [6]
testset (50 images per identity). Figure 4 shows that verification
(determining whether two faces match or not) accuracy drops sig-
nificantly as resolution decreases. Equal Error Rate (EER), the value
in the ROC curve where false acceptance and false rejection rate
are identical, grows as high as 0.27 when the resolution is 14×14.

For further analysis, we run a small study with 8 identities in
VGGFace2 [6] testset. We train ResNet50 [29] with 2-dimensional
output features using SphereFace loss [55]. Figure 6 visualizes the
trained features for varying resolutions, where the points with the
same color represent the same identity. We observe that when the
resolution is high (e.g., 112×112), features for each identity form
non-overlapping sharp clusters. However, as resolution drops, clus-
ters become wider and start to overlap with each other, becoming
indistinguishable.

3.3 How Fast Can DNNs Identify Faces?
Conventional face identification pipelines operate in a 2-step man-
ner (i.e., face detection on the image and face recognition on each
detected face sequentially). In our scenarios, both steps require sig-
nificant computation. First, the detection network should run on a
high-resolution frame to detect distant faces that appear very small.
In such settings, providing real-time performance is challenging;
Table 1 shows that YOLOv2 [63], one of the fastest networks that
can be used for face detection, takes more than 9 seconds to process
a 1080p frame. Second, recognition latency increases proportionally

Table 1: Inference time of DNNs with TensorFlow-Lite run-
ning on LG V50 (Qualcomm Adreno 640 GPU).

Model

Input size
MobileNetV1 [31]
(Classification)

YOLO-v2 [63]
(Detection)

224×224 24ms 357ms
640×360 55ms 1,477ms
1,280×720 209ms 5,009ms
1,920×1,080 452ms 9,367ms

Table 2:Complexity and latency of componentDNNs. FLOPs
are measured with tf.profiler.profile() function.

Task Model FLOPs Inference time

Face
detection

RetinaFace [15]
(MobileNetV1-based) 9.54 G

648 ms per
1080p image

Identity
clarification Ours (Section 5.2) 15.84 G

166 ms per
14×14 face

Face
recognition

ArcFace [14]
(ResNet50-based) 10.21 G

287 ms per
112×112 face

to the number of faces, which can be very large in crowded scenes.
Figure 5 shows that naively running the state-of-the-art multi-DNN
face identification pipeline composed of DNNs summarized in Ta-
ble 2 1 takes more than 14 seconds to process a scene with 30 faces
even on a high-end LG V50 with Qualcomm Adreno 640 GPU.

3.4 Summary
In crowded spaces, humans become cognitively overloaded, clearly
necessitating the need for a system to aid their abilities. However,
DNN-based face recognition algorithms cannot be applied directly
as they fail to identify LR faces accurately, and naive execution
incurs significant latency.

4 EagleEye: System Overview
4.1 Design Considerations
High Recognition Accuracy. Our primary objective is to design
a face identification pipeline capable of accurately identifying tar-
get(s) in crowded spaces, even when he/she appears very small.
Soft Real-Time Performance. While enabling an accurate face
identification pipeline, our goal is to provide soft real-time perfor-
mance (e.g., 1 fps) for application usability. We aim to devise tech-
niques to optimize various latency components in the end-to-end
system while incurring a minimum loss in recognition accuracy.
Use of Commodity Mobile Camera. We aim at achieving high
accuracy using frames captured by cameras of commodity smart-
phones or wearable glasses (e.g., 1080p frames at 30 fps [17]). If
cameras with higher resolution or optical zoom-in are available,
our approach can help cover a more extensive search area.
Minimal Use of Offloading. In our common use cases (i.e., a
moving user in crowded outdoor environments), we assume that
1These are the state-of-the-art not only in terms of accuracy but also in terms
of complexity. For face detectors, comparable networks are heavy VGG16 [65] or
ResNet101 [33]-based. Recent face recognizers are based on 64-layered ResNet [55, 67].

EagleEye: Wearable Camera-based Person Identification
in Crowded Urban Spaces MobiCom ’20, September 21–25, 2020, London, United Kingdom

① Background
à Excluded from processing
② Large, frontal faces
à Detection + lightweight recognition
③ Large, profile faces
à Detection + heavy recognition
④ Small faces
à Detection + ICN + heavy recognition

①② ④③

Figure 7: Operation of EagleEye in a nutshell.

Edge-Based
Background

Filtering

Input
frame

Mobile

Cloud

Render Feature vectors

Identity
Clarification

Verification

Variation-Adaptive
Face Recognition

Face Detection
(on CPU)

Lightweight Face
Recognition

(on GPU)

Heavy Face
Recognition

Spatial
Pipelining

Figure 8: EagleEye system overview.

the availability of edge servers and Wi-Fi connectivity are limited.
For robust performance, we aim to minimize the amount of data
offloaded to the cloud and run most of the computation on local.

4.2 Operational Flow
Figure 7 shows the nutshell operation of EagleEye: given a crowded
scene image, we adaptively process each region with different
pipelines depending on the content. For background regions, we
do not run any DNN. For non-background regions, we run face
detection and adaptively select the latter part of the pipeline to
process each detected face based on different variations: i) large,
frontal faces (which are very easy to recognize) are processed with
a lightweight recognition network, ii) large, profile faces (whose
resolutions are sufficient but pose variations make recognition dif-
ficult) are processed with a heavy recognition network, and iii)
small faces are first processed with Identity Clarification Network)
(which enhances resolution of LR faces for accurate recognition)
and then with heavy recognition network. Finally, exploiting the
spatial independence of the task, we process each region and face
in parallel on heterogeneous processors on mobile and cloud.

Figure 8 shows the operational flow of EagleEye. We employ
Content-Adaptive Parallel Execution to run the complex multi-DNN
face identification pipeline at low latency using heterogeneous
processors on mobile and cloud. Given an input frame, Spatial
Pipelining first divides it into spatial blocks, so that each block
can be processed in a pipelined and parallel manner. Afterwards,
Edge-Based Background Filtering rules out background blocks with
edge intensity lower than a threshold. For the remaining blocks,
we detect faces on the mobile CPU. Each detected face is scheduled
to a different pipeline by Variation-Adaptive Face recognition. Large,
frontal faces are processed by lightweight recognition network
running on mobile GPU. The rest is offloaded to the cloud, where
large, profile faces are processed by heavy recognition network, and
small faces are processed by ICN and then by heavy recognition
network.

LR Reconstructed !"

Face
upsampler

Ground truth "

Discriminator (D) GAN
loss

Face feature
extractor (#)

Face
similarity

loss

Face
landmark
estimator landmark %̂

Pixel
loss

Generator (&)

Figure 9: Identity Clarification Network: overview.

Co
nv

+R
eL

U

Re
sB

lo
ck

Re
sB

lo
ck

Co
nv

LR Intermediate HR

Co
nv

+R
eL

U

Co
nv

+R
eL

U

estimated
landmark

…

Co
nv

+R
eL

U

Re
sB

lo
ck

Re
sB

lo
ck

…

Re
sB

lo
ck

Re
sB

lo
ck

…

12 blocks

Co
nv

+R
eL

U

Co
nv

+R
eL

U

Re
sB

lo
ck

Re
sB

lo
ck

…

Co
nv

3 blocks 3 blocks

3 blocks

Figure 10: Generator network architecture.

5 Identity Clarification-Enabled Face
Identification Pipeline

In this section, we detail our novel 3-step face identification pipeline.
It operates as shown in Figure 2: i) detect faces in the scene, ii)
enhance each LR face with ICN, and iii) extract feature vectors for
each face with recognition network.

5.1 Face Detection
The first step of our pipeline is face detection. The detection network
should be accurate in detecting small faces, since faces missed in
this step would lose the chance of being identified at all. At the same
time, it should be lightweight so that it can run in (soft) real-time.
We experiment various state-of-the-art DNNs and select RetinaFace
detector [15] with MobileNetV1 [31] backbone for the following
reasons: i) it adopts context module which has been proven very ef-
fective in detecting small faces [59, 65], and ii) it is the fastest among
the state-of-the-art group due to its lightweight backbone network
(others are heavy VGG16-based [65] or ResNet101-based [33]).

5.2 Identity Clarification Network
LR faces lack details crucial for identification. To enhance recog-
nition accuracy, we design ICN, which enhances the resolution of
LR faces using Generative Adversarial Network (GAN). As con-
ventional GANs reconstruct faces with significant distortion from
the original identity (Figure 11), we adapt GAN to reconstruct
identity-preserving faces by using various loss functions, as well as
a specialized training methodology (Identity-Specific Fine-Tuning).
Network Architecture. Figure 9 shows the overview of ICN. For
generator G, we adopt Residual block [29]-based architecture simi-
lar to FSRNet [12] as shown in Figure 10, which has shown high
reconstruction performance. Furthermore, we employ anti-aliasing
convolutional and pooling layers [72] to improve robustness to
pixel misalignment in face detection and cropping process. We em-
ploy various additional networks and loss functions to train ICN to
preserve identity as follows.

MobiCom ’20, September 21–25, 2020, London, United Kingdom Juheon Yi, Sunghyun Choi, and Youngki Lee

LR GAN Ground truth

Figure 11: GANs reconstruct realistic faces, but fail to pre-
serve the face identity.

Following the convention in super-resolution [1, 51], the gen-
erator is trained to minimize the pixel-wise L2 loss between the
reconstructed face and the ground truth,

Lpixel =
1

HW

H∑
i=1

W∑
j=1

(
∥yi, j − ỹi, j ∥2 + ∥yi, j − ŷi, j ∥2

)
, (1)

where H ,W are height and width, ỹ and ŷ are the intermediate and
final High-Resolution (HR) face in Figure 10, respectively, and y is
the ground truth.

As reconstructing HR faces is very challenging, recent studies
have shown that employing a facial landmark estimation network
to guide the reconstruction process yields superior performance [4,
12]. We adopt the approach to estimate facial landmarks from the
intermediate HR face instead of directly from the LR face. The
facial landmark estimation network is trained to minimize the MSE
between estimated and ground truth landmarks,

Llandmark =
1
N

N∑
n=1

∑
i, j
∥zni, j − ẑ

n
i, j ∥

2, (2)

where ẑni, j is the estimated heatmap of the n-th landmark at pixel
(i, j) and z is the ground truth.

Recent studies have shown that GAN [21] plays an important
role in reconstructing realistic images. We employ WGAN-GP [23]
for improved training stability, whose loss is defined as:

LGAN = −D(ŷ) = −D (G (x)) , (3)

where G(x) denotes the HR face reconstructed by the generator,
and D denotes the discriminator that classifies whether the recon-
structed face looks real or not, which is trained by minimizing the
following loss function (refer to the original paper [23] for details),

LDiscr iminator = D(ŷ) − D(y) + λ (∥∇x̂D (x̂) ∥2 − 1)2 . (4)

We also enforce the reconstructed face to have similar features
with the ground truth by minimizing the face similarity loss

Lf ace =
1
d
∥ψ (y) −ψ (ŷ) ∥2, (5)

whereψ (·) denotes d-dimensional feature vector extracted by the
VGG16 network trained on ImageNet [13].

Finally, the above loss functions are combined as a weighted sum
and minimized in the training process,

Ltotal = Lpixel + 50 · Llandmark + 0.1 · LGAN + 0.001 · Lf ace . (6)

Identity-Specific Fine-Tuning. Baseline ICN aims to adapt con-
ventional GANs to overcome their limitation (i.e., reconstructing
perceptually realistic faces at the cost of significant distortion from
the ground truth). However, we notice that it still often reconstructs
faces with distorted identity from the original. Accordingly, we need
another step to employ ICN for our purpose of accurate recognition.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Distance

112x112

56x56

28x28

14x14

(a) Same identity pair.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Distance

112x112

56x56

28x28

14x14

(b) Different identity pair.

Figure 12: CDF of face distances for varying resolutions.

Before introducing our approach, we further dig deeper into the
LR face recognition problem. Figure 12 shows that as resolution
decreases, L2 distance between features of faces with the same
identity increases significantly, whereas those of different identities
remain identical. In other words, the difficulty of LR face recogni-
tion comes from the hardship of accepting positive pair of faces,
rather than denying negative pairs. Therefore, LR face recognition
accuracy can be enhanced if we can bring back the features of faces
with the same identity close to each other.

To this end, we develop Identity-Specific Fine-Tuning to re-train
ICNwith reference images (probes) of the target, which is commonly
available in our target scenarios (e.g., photos of children provided
by parents). Such re-training process enables ICN to instill the facial
details of the target into the input LR face, thus making it easier
to recognize when a LR face of target identity is captured. While
such biasing may also increase false positives caused by LR faces
that do not match the target identity pulled towards the probes,
we observe that such cases only occur for ones that are very close
to the target in feature space, thus yielding gain in true positives
outweighing false positives (78% vs. 14% as shown in Section 8.3).
Probe Requirements. To fine-tune the ICN to instill facial details
of the target, Identity-Specific Fine-Tuning requires probe images
with rich facial details. As an initial study we collect the probes
with high-resolution, and leave detailed analysis of the impact of
the composition of probes (e.g., pose or occlusion) as future work.
Data Augmentation. To diversify the probes as well as boost
robustness to various real-world degradation, we also utilize the
following augmentation techniques:
• Illumination.Change value (V) component inHSV color space.
• Blur. Apply Gaussian blur with varying kernel sizes.
• Noise. Add Gaussian noise with varying variance.
• Flip. Apply horizontal flip.
• Downsampling. Resize with different downsampling kernels.
(e.g., bicubic, nearest neighbor).

Scalability. Finally, the overhead of fine-tuning the baseline ICN
pre-trained on a large-scale face dataset to a specific target identity
is not significant (e.g., takes about 20 minutes on a single NVIDIA
GTX 2080Ti GPU). Thus, we expect it can be flexibly re-trained at
deployment as the target changes.

5.3 Face Recognition and Service Provision
At the final stage, state-of-the-art ResNet50-based ArcFace [14]
runs on each face to extract 512-dimensional feature vector, which
is compared to that of the target probes. Those with distance below
the threshold are highlighted on the screen so that the user can take
further actions. To compensate for possible motion between the

EagleEye: Wearable Camera-based Person Identification
in Crowded Urban Spaces MobiCom ’20, September 21–25, 2020, London, United Kingdom

(a) Raw frame. (b) Edges. (c) Filtered.

Figure 13: Edge-based background filtering.

image capture and output rendering (about 1 second as our evalua-
tion shows), we can employ motion tracking to shift the bounding
boxes using approaches used in prior detection systems [10, 53].

6 Real-Time Multi-DNN Execution
In this section, we detail our runtime system to execute the multi-
DNN face identification pipeline at low latency. We start with work-
load characterization by identifying the sources of latency, followed
by our proposed Content-Adaptive Parallel Execution.

6.1 Workload Characterization
Sequential Execution of Multiple DNNs. Identifying target per-
son(s) in a crowded scene requires a sequential execution ofmultiple
complex DNNs (i.e., face detection, identity clarification, and recog-
nition) whose individual complexities are summarized in Table 2.
High-Resolution Input. Conventional object detection networks
downsample the input images to reduce complexity (e.g., 416×416 [63]
or 300×300 [22]). However, in our case, the input image size should
be retained large (e.g., 1080p), so that small faces have enough
pixels to be detected. As the complexity of DNN inference grows
proportionally to the image size, latency becomes significant when
processing such high-resolution images.
Repetitive Execution for Each Face. ICN and recognition net-
work must repeatedly run for each face detected by the face detec-
tion network. The latency increases proportionally to the number
of faces in the scene, which becomes significant in crowded spaces.

6.2 Content-Adaptive Parallel Execution
6.2.1 Optimization Strategies

Content-Adaptive Pipeline Selection. We adaptively process
each region of the image with different pipelines depending on the
content. This helps optimize the latency incurred when processing a
large number of faces, while maintaining high recognition accuracy.
Spatial Independence and Parallelism. Identifying faces in dif-
ferent regions of the image is spatially independent. Furthermore,
recognizing each detected face can be executed simultaneously. To
take full advantage of such opportunities for parallelism, we divide
the image into spatial blocks and process them in a pipelined and
parallel manner using heterogeneous processors on mobile and
cloud. This helps optimizing the latency of multi-DNN execution
on high-resolution images.

6.2.2 Content-Adaptive Pipeline Selection
We develop techniques to optimize the latency of complex multi-
DNN face identification pipeline execution while maintaining high
accuracy. Specifically, Edge-Based Background Filtering rules out

Is the resolution sufficient?

Is the pose frontal?

No Yes

No Yes

ICN+ heavy
recognition

�
�

�

� �

�ࣂ�

Heavy recognition

� �

�

� �

� ࣂ

Lightweight recognition

Figure 14: Variation-Adaptive Face Recognition.

Time

①②③
④ Mobile CPU

Mobile GPU

Cloud GPU

D
on ①

D
on ②

D
on ③

D
on ④

I
+
H

L L L L L L L L L L

H
I
+
H

I
+
H

I
+
H

I
+
H

H
I
+
H

I
+
H

D Detection L Lightweight
recognition H Heavy

recognition
I+H ICN + Heavy

recognition

Figure 15: Spatial Pipelining on heterogeneous processors.

background regionswhere faces do not exist at all.Variation-Adaptive
Face Recognition selects different recognition pipelines depending
on recognition difficulty.
Edge-Based Background Filtering. Running face detection on
regionswhere faces do not exist at all (e.g., background) is a wasteful
computation. To mitigate the problem, we use edges in the image
to rule out such regions before running the identification pipeline.
Specifically, given a frame as shown in Figure 13(a), we detect
edges as in Figure 13(b), filter out blocks with edge intensity below
a threshold as depicted in Figure 13(c), and run face detection only
on the remaining blocks. Note that edge detectors are extremely
lightweight, especially considering that we can even detect edges on
downsampled images. For example, the time complexity of Canny
edge detector [5] for H ×W frame isO(HW · log(HW)), and it runs
in less than 2 ms for 360p frame on LG V50. Thus, its overhead is
minimal even when the edge detection is not effective for some
scenes having full of objects and no background regions.
Variation-Adaptive Face Recognition. State-of-the-art recog-
nition networks are designed very complex (e.g., heavy ResNet
backbone with a large number of batch normalization layers) to
accurately identify faces even under high variations in pose, illu-
mination, etc. However, employing such heavy networks for faces
in ideal conditions is an overkill. For example, MobileFaceNet [9]
and ResNet50-based ArcFace [14] achieve comparable accuracy on
LFW [34] dataset composed of large, frontal faces (98.9% vs. 99.3%),
whereas inference time differs by more than 20× (14 ms vs. 287 ms).
Therefore, we aim to optimize latency by adaptively processing
each face depending on its variation (i.e., recognition difficulty).

Figure 14 depicts our Variation-Adaptive Face Recognition, which
utilizes the size of bounding box and 5 face landmarks detected by
RetinaFace [15] detector. First, small faces are processed by ICN and
then by ResNet50-based ArcFace [14]. For large faces, we estimate
the pose using the detected landmarks; for example, if the angle
between the line connected by points (2, 3) and (2, 5) measured in

MobiCom ’20, September 21–25, 2020, London, United Kingdom Juheon Yi, Sunghyun Choi, and Youngki Lee

Algorithm 1 Combined operational flow of EagleEye
1: while application is running do
2: Result ← {}
3: Frame ← acquireF rameFromCamera()
4: Edдes ← EdдeDetector (Frame)
5: NonBackдround ← BackдroundF ilter (Edдes)
6: for Block in NonBackдround do
7: Faces ← FaceDetect ion(Block)
8: for f ace in Faces do
9: Result ←Result∪AdaptiveFaceRecoдnition(f ace)
10: end for
11: end for
12: Render Result on screen
13: end while

counterclockwise direction is negative, we can tell that the face
is looking to the right. As faces with pose variations are difficult
to accurately identify, they are also processed by ResNet50-based
ArcFace (ICN is not needed here as resolution is already sufficient).
The remaining faces (large and frontal) which are easy to identify
are processed by MobileFaceNet [9].

6.2.3 Execution Planning
We optimize latency of multi-DNN face identification pipeline by
scheduling each component DNN execution to the most suitable
processor on mobile and cloud.
Offloading Decision. As our target scenarios assume crowded
outdoor environments with congested 3G/LTE network, offloading
high-resolution images for detection is impractical; instead, we
offload only the detected faces. Specifically, LR faces are suitable
for offloading, as their data sizes are very small (e.g., 14×14 pixels)
whereas the required computation (i.e., ICN and heavy recognition)
incurs significant latency on mobile (e.g., 166+287 ms). We also
offload large, profile faces, and leave only the large, frontal faces to
be processed by lightweight recognition on mobile.
Mobile Processor Mapping. The mobile needs to run both detec-
tion and lightweight recognition. However, simply multithreading
the execution on GPU does not help optimize latency, as mobile
GPUs lack preemptive multitasking support. Therefore, we uti-
lize heterogeneous processors (CPU and GPU) to parallelize the
execution. As dynamically switching the mapping over time is chal-
lenging due to high latency overhead of loading DNN on mobile
GPUs (e.g., 2 seconds for 118 MB ResNet50-based ArcFace [14] on
LG V50 with TensorFlow-Lite), we statically run detection on CPU
and recognition on GPU considering the following aspects:
• Memory I/O. Running face detection on GPU requires high-
resolution images loaded onto GPUmemory, and output feature
maps from different stages in the feature pyramid (whose size is
proportional to the input image size) copied back to CPU to be
post-processed to bounding boxes. Considering memory over-
head, it is more suitable to run face recognition on GPU whose
input/output are small-sized faces and 1D feature vectors.
• Inference time. Besides, we observe that the inference speed
slowdown of RetinaFace detector running on CPU is 1.22× (648
vs. 793 ms), whereas it is 2.07× for MobileNetV1-based ArcFace
recognizer (14 vs. 29 ms). Therefore, running detection on CPU

(a) Low. (b)Medium. (c) High.

Figure 16: In-the-wild dataset examples.

Table 3: Average and standard deviation of the composition
of each face type in the test dataset.

Low Medium High

Large frontal 3.00±2.62 3.85±2.11 5.20±3.73

Large profile 1.00±0.76 1.50±1.49 2.8±1.78

Low-resolution 3.07±1.75 5.45±2.50 8.87±3.64

Total 7.07±1.79 11.10±3.74 16.87±4.78

and recognition on GPU is more feasible to optimize overall
latency, especially when the number of faces is large.

6.2.4 Spatial Pipelining
To further optimize the latency, we exploit the spatial indepen-
dence of the workload by processing each image sub-block in a
pipelined and parallel manner. As depicted in Figure 15, given non-
background blocks in a scene, we detect faces in one block onmobile
CPU, while simultaneously processing faces detected in another
block on mobile and cloud GPU.

Note that we need to divide the image into blocks in an over-
lapping manner with padding, so as to prevent faces from being
split across different blocks (and thereby failing to be detected).
While fine dividing increases the chance of higher parallelism, it
also increases the computational overhead due to padding. Based
on our empirical evaluation on such tradeoff in Section 8.4.3, we
divide an image into 4x4 blocks.

6.2.5 Putting Things Together
Algorithm 1 summarizes the combined operational flow. Upon ac-
quiring a frame from the camera, we detect edges (line 4) and filter
out background (line 5). For non-background blocks (line 6), we run
face detector on CPU (line 7) and process each face adaptively in
mobile or cloud GPU (lines 8–10) in a pipelined and parallel manner.
Finally, the recognition result is rendered on the screen.

7 EagleEye Implementation
Mobile. We implement the mobile side of EagleEye on two com-
modity smartphones running on Android 9.0.0: LG V50 with Qual-
comm Snapdragon 855 and Adreno 640 GPU and Google Pixel 3 XL
withQualcommSnapdragon 845 andAdreno 630GPU. Unless stated
otherwise, we report evaluation results on LG V50. RetinaFace [15]
and MobileFaceNet [9] are implemented using TensorFlow 1.12.0
and converted to TensorFlow-Lite for mobile deployment. Image
processing functions (edge detection, face cropping) are imple-
mented using OpenCV Android SDK 3.4.3. The mobile device is
connected to the server via a TCP connection.
Cloud. We implement the cloud side of EagleEye on a desktop PC
running on Ubuntu 16.04 OS, equipped with Intel Core i7-8700 3.2

EagleEye: Wearable Camera-based Person Identification
in Crowded Urban Spaces MobiCom ’20, September 21–25, 2020, London, United Kingdom

 0

 2

 4

 6

 8

 10

2-step 3-step Offload
(Raw)

Offload
(JPEG)

EagleEye

L
a

te
n

c
y

 (
s

)

(a) End-to-end latency.

 0

 0.2

 0.4

 0.6

 0.8

 1

2-step Offload
(JPEG)

EagleEye

A
c

c
u

ra
c

y

Top-1 Top-2 Top-3

(b) Top-K Accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

Our

dataset

WIDER

Face

R
a

te

(c) False Alarm increase.

Figure 17: EagleEye performance overview.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
 A

c
c
e
p

ta
n

c
e

False Acceptance

112x112
30 probes
5 probes
3 probes
1 probe
14x14

(a) Ideal case.

 0
 0.2
 0.4
 0.6
 0.8

 1

112x112 14x14 1
probes

3
probes

5
probes

10
probes

30
probes

R
a
te

True positive False positive

(b) Our scenario.

Figure 18: Performance of Identity Clarification Network.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15
 1

 1.5

 2

 2.5

 3

 3.5

D
e
te

c
ti

o
n

 r
a
te

L
a
te

n
c
y
 g

a
in

 (
x
)

Edge threshold

Detection rate
Latency gain

Figure 19: Edge-Based Back-
ground Filtering.

GHz CPU and an NVIDIA RTX 2080 Ti GPU (11 GB RAM). We im-
plement most of the cloud-side functions in Python 3.5.2 and utilize
Numba [43], a Just-In-Time (JIT) compiler for Python, to accelerate
the performance comparable to C/C++. ICN and ResNet50-based
ArcFace [14] are implemented using TensorFlow 1.12.0.

8 Evaluation
8.1 Experiment Setup
DNN Training. We train our face detector on WIDER Face [69]
train dataset. Also, we train our face recognizers (both the light
and heavy models) on MS1M [25] dataset. ICN is trained on FFHQ
dataset [41]. As FFHQ dataset does not contain face landmark labels,
we employ state-of-the-art network [3] to estimate face landmarks
and use them as ground truth labels.
Datasets. We evaluate EagleEye with two different datasets: single
faces and crowded scenes. For single faces, we collect 50 identities
in VGGFace2 [6] testset, with 50 samples per each identity. For the
scenes, we use in-the-wild images (mostly containing faces of a
single ethnicity group) collected and classified depending on crowd-
edness (i.e., Low, Medium, and High) as described in Section 3.1
(examples are shown in Figure 16). The detailed composition of
the faces in the scene dataset are summarized in Table 3. We also
categorize the dataset depending on whether the target is present
or not. Furthermore, we also collect scene images from WIDER
Face [69] test dataset, which contains diverse ethnicity groups (15
images per each crowdedness category).
Evaluation Protocols andMetrics.We evaluate the performance
of EagleEye with the following evaluation protocols and metrics:
• Latency: the time interval between the start and the end of

the pipeline execution, measured on mobile.
• Equal Error Rate (EER): the value in the ROC curve where

the false acceptance and false rejection rates are identical.
• True Positive (TP) & False Positive (FP): the rate in which

the test faces are correctly/wrongly accepted as the target, respec-
tively, given a fixed threshold.

• Top-K Accuracy: the percentage of images in which the dis-
tance between the target face and the probe is within the top K-th
among all faces in the scene (applies for scenes with the target
present). This can also be interpreted as recall for a single target.
• False Alarm: the percentage of images in which the system

falsely detects that the target is present in the scene (applies for
scenes with the target absent).
Comparison Schemes.We compare the performance of EagleEye
with the following comparison schemes:
• 2-step baseline runs the conventional 2-step identification

pipeline (MobileNetV1-based RetinaFace and ResNet50-based Arc-
Face) all on the mobile sequentially.
• 3-step baseline runs our proposed 3-step identification pipeline

(MobileNetV1-based RetinaFace, ICN, and ResNet50-based ArcFace)
all on the mobile sequentially.
• Full offload fully offloads the image to the cloud over LTE

and runs the 3-step identification pipeline. The image is sent either
raw or after JPEG compression. Note: we run this experiment under
a normal LTE performance (≈11 Mbps), and it is likely that the
performance of full offloading could be worse than what we report
in crowded outdoor environments.

8.2 Performance Overview
We first evaluate the overall performance of EagleEye compared
with alternatives forHigh scenes. Figure 17 shows the results. Firstly,
as shown in Figure 17(a), EagleEye outperforms the latency of the
3-step baseline by 9.07× (with only 108 KBytes of data offloaded to
the cloud). Also, it shows the highest Top-K accuracy (80% of Top-2
accuracy vs. 53% for the 2-step baseline) at the reasonable increase
of false alarms (Figure 17(b) and (c)). A reason for the increase of
the false alarm is that our dataset contains the faces of the same
ethnicity group, increasing the chance of similar-looking identi-
ties with the target. For the WIDER Face dataset which contains
more diverse ethnicity groups, we did not observe any false alarm
increase. Note that the accuracy and false alarms are better with
Medium and Low scenes, as shown in Figure 25.

MobiCom ’20, September 21–25, 2020, London, United Kingdom Juheon Yi, Sunghyun Choi, and Youngki Lee

(a) 14×14. (b) Baseline ICN. (c) Ideally fine-
tuned.

(d) Fine-tuned to
identity #6 (orange).

Figure 20: Feature map visualization for ICN.

(a) 112×112. (b) 14×14. (c) Baseline. (d) Fine-tuned

Figure 21: Reconstruction example of ICN.

(a) Raw frame. (b) Detected edges. (c) 59% of blocks left. (d) 30% of blocks left. (e) 8% of blocks left.

Figure 22: Example operation of Edge-Based Background Filtering.

Interestingly, while fully offloading JPEG-compressed images
achieves the smallest latency, we observe that its Top-2 accuracy
drops to 50% as shown in Figure 17(b), as compression artifacts
hinder reconstruction performance of ICN and recognition network.
We could apply video compression (e.g., H.264) to minimize latency
more, but it would further degrade performance as it adopts motion
vector-based inter-frame encoding, incurring additional distortion
in the faces. As compression artifact reduction is a challenging
problem, recent attempts have been made to design specialized
DNNs for it [24, 56]. Thus, we conjecture that solving this issue
will not be trivial and leave detailed investigation as future work.

8.3 Identity Clarification Network
We evaluate the performance of ICN with a varying number of
probes used for Identity-Specific Fine-Tuning. Figure 18 shows the
results for (a) ideal cases (ICN trained for individual faces) and (b)
our scenarios (ICN trained with a target identity), respectively. For
the ideal case, ICN recovers the accuracy of 14×14 faces similar to
112×112 with about 5 probes only. For our scenarios, as the number
of probes increases, ICN injects more facial details of the target to
the input LR face, significantly increasing the chance to identify
the target with a relatively small increase in the FP. Figure 18(b)
shows that the gain in TP (78%) outweighs that of FP (14%). We fur-
ther analyze the reasons for accuracy improvement using a simple
example with the 8 identities (the same setting as in Section 3.2).
From the 14×14 LR faces whose features severely overlap with each
other (Figure 20(a)), the baseline ICN (without fine-tuning) clusters
each identity’s features more tightly, but some overlapping regions
still remain (Figure 20(b)). When enhancing each LR face with ICN
fine-tuned with corresponding probes, we observe each feature
cluster is separated even more clearly (Figure 20(c)). In the case
of applying ICN fine-tuned to target identity #6 (orange samples),
Figure 20(d) shows that the samples corresponding to the target
are grouped to form a tight cluster. While other identity groups
are pulled towards the target, the cases where the pulled samples
overlap with those of the target (false positive) are not dominant.

Finally, Figure 21 shows the face reconstruction examples of ICN.
Baseline ICN reconstructs a face quite similar to the ground truth

but lacks some fine attributes (e.g., wrinkles) in the ground truth
face. Identity-Specific Fine-tuning enables the ICN to instill such
details in the reconstructed face, thus enabling accurate recognition.

8.4 Content-Adaptive Parallel Execution
8.4.1 Edge-Based Background Filtering
Next, we evaluate the performance of our Edge-Based Background
Filtering method. Figure 19 shows the detection rate and latency
gain as we increase the edge intensity threshold. Higher threshold
results in higher latency gain, but at the cost of loss in detection rate.
We observe threshold between 0.05 and 0.08 balances the tradeoff,
and we empirically set it as 0.08 which achieves 1.76× latency
gain with 8.7% loss in detection rate. Figure 22 shows an example of
image blocks being filtered for different thresholds (covered in black
in Figure 22(c)–(e)).With a higher threshold, blocks containing large
faces starts to get ruled out. The tradeoff can be more aggressively
made if our system can only focus on identifying distant, small
faces while relying on users to recognize large, closer faces.

8.4.2 Variation-Adaptive Face Recognition
To evaluate the effectiveness of Variation-Adaptive Face Recogni-
tion, we synthesize a group of faces, which contains 10 samples
per each case classified in Figure 14. We compare our technique
(adapting the recognition pipeline based on pose and resolution)
with the following baselines: (i) running a lightweight recognizer
(MobileFaceNet [9]) on all faces (denoted as Base light), (ii) running
ICN and a heavy recognizer (ResNet50-based ArcFace [14]) on all
faces (denoted as Base full), (iii) adaptively applying the lightweight
and heavy recognizers based on the resolution only (denoted as Res-
only). We did not apply our parallel and pipelined execution for this
experiment so that only the relative comparisons are meaningful.

Figure 23 shows that our approach achieves comparable accu-
racy with Base full, while reducing the latency by 1.80×. On the
contrary, Base light and Base full suffer from low accuracy and
significantly high latency, respectively. The Res-only yields fairly
high accuracy gain with small latency overhead, but the accuracy
remains lower than Base full as large profile faces processed by
light MobileFaceNet results in inaccurate decisions.

EagleEye: Wearable Camera-based Person Identification
in Crowded Urban Spaces MobiCom ’20, September 21–25, 2020, London, United Kingdom

 0
 3
 6
 9

 12
 15

Base
light

Base
full

Res-
only

Ours
 0
 0.2
 0.4
 0.6
 0.8
 1

L
a
te

n
c
y
 (

s
)

A
c
c
u

ra
c
yLatency Accuracy

Figure 23: Performance of Variation-Adaptive Face Recogni-
tion.

 0

 2

 4

 6

 8

Sequential Pipelining

L
a

te
n

c
y

 (
s

)

RetinaFace
MobileFaceNet
ICN
ArcFace

(a) End-to-end latency.

 0

 1

 2

 3

1x1 2x2 4x4 8x8 12x12

L
a

te
n

c
y

 (
s

)

GPU CPU

(b) Face detection latency.

Figure 24: Performance of Spatial Pipelining.

 0

 2

 4

 6

 8

 10

Low Medium High

L
a

te
n

c
y

 (
s

)

3-step EagleEye

(a) Latency.

 0

 2

 4

 6

 8

 10

3-step A A+P A+P+E

L
a

te
n

c
y

 (
s

)

(b) Latency breakdown.

 0

 0.2

 0.4

 0.6

 0.8

 1

Low Medium High

T
O

P
-3

 A
c

c
u

ra
c

y 2-step EagleEye

(c) Top-3 Accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

Low Medium High

F
a

ls
e

 A
la

rm
 I

n
c

re
a

s
e

Our dataset
WIDER Face

(d) False alarm increase.

Figure 25: End-to-end latency for varying crowdedness.

8.4.3 Spatial Pipelining
Figure 24(a) shows the performance of Spatial Pipelining on High
scenes. Our pipelining yields 5.03× acceleration compared to the
baseline that runs face detection and processes faces with Variation-
Adaptive Face Recognition sequentially using the mobile GPU (de-
noted as Sequential).

We further analyze the effect of the number of blocks to paral-
lelize. Figure 24(b) shows the latency of face detector with varying
number of blocks. We need to divide the image in an overlapping
manner to prevent faces split across blocks, which increases compu-
tational overhead due to repetitive face detection on the overlapping
regions. Thus, the larger the number of blocks, the higher the la-
tency overhead. Considering the tradeoff between such cost and
gain for parallelism, we divide the image into 4×4 blocks by default.

8.5 Performance for Varying Crowdedness
Figure 25(a) shows the end-to-end latency comparison of 3-step
baseline and EagleEye. The latency of EagleEye remains similar
regardless of crowdedness, mainly because we pipeline and paral-
lelize the execution on mobile and cloud. However, the latency of
3-step increases with more crowded scenes since recognition la-
tency increases proportionally to the number of faces. Accordingly,
we conjecture that the latency gain will be greater as crowdedness
increases even more. Furthermore, current bottleneck remains at
the face detection stage, and we expect that the latency will be
further reduced as face detectors become more optimized.

Figure 25(b) shows the latency breakdown on High scenes for
gradually adding on the components of EagleEye: Variation-Adaptive
Face Recognition (A), Spatial Pipelining (P), and Edge-Based Back-
ground Filtering (E). Combining each component yields a synergetic
gain, achieving 9.07× acceleration compared to the 3-step baseline.

Finally, Figure 25(c) shows the Top-3 accuracy and false alarm
increase of EagleEye compared to the 2-step baseline. Overall, Ea-
gleEye yields 27.6% accuracy gain, with accuracy above 80% even
for High scenes. Figure 25(d) shows that at the cost of such accuracy
gain, EagleEye results in 19.1% increased false alarm. Such increase

 0
 2
 4
 6
 8

 10

Low Medium Hard

L
a
te

n
c
y
 (

s
) 2-Step 3-Step EagleEye

Figure 26: Latency evaluation on Google Pixel 3 XL.

is due mainly to the fact that our dataset contains the people with
the same ethnicity, and we observe no increase in false alarm in
case of WIDER Face dataset.

8.6 Performance on Other Mobile Devices
Lastly, we evaluate the end-to-end latency on Google Pixel 3 XL to
validate the performance of EagleEye on other mobile devices. The
inference times of MobileNetV1-based RetinaFace, ICN, ResNet50-
based ArcFace, and MobileFaceNet are 918, 225, 193, 18 ms, respec-
tively. Figure 26 shows that the latency performance of EagleEye
and gain compared to 3-step baseline are similar (8.14× for Hard
scenes) to previous results, indicating that EagleEye shows consis-
tent performance on other devices.

9 Related Work
Face Recognition. Rapid development of CNNs, along with large
scale face datasets [6, 25], has enabled significant improvement in
face recognition accuracy [14, 55, 67]. However, state-of-the-art
methods fail to accurately identify LR faces. EagleEye inserts a
novel ICN to the conventional 2-step pipeline (i.e., detection and
recognition) to improve LR face recognition accuracy.
Image Super-Resolution. Starting from SRCNN [16], computer
vision community has studied various CNN-based approaches for
image super-resolution [1, 51]. Several studies have also targeted
super-resolving LR faces [4, 12]. However, existing approaches are
heavily GAN [21]-driven; they reconstruct real-looking faces, but
the identity is often distorted (Figure 11).

MobiCom ’20, September 21–25, 2020, London, United Kingdom Juheon Yi, Sunghyun Choi, and Youngki Lee

ObjectDetection forHigh-Resolution Images. Several attempts
have been made to optimize latency in detecting objects in high-
resolution images by pipelining and parallelizing the processing on
different subregions of the image [20, 64]. Similar to these work,
EagleEye designs Content-Adaptive Parallel Execution to optimize
latency in identifying faces in a high-resolution scene image. Several
studies also optimize energy consumption by dynamically adapting
frame resolution depending on the content of the scene [32, 57].
These approaches can also be integrated with EagleEye to make
the system even more practical.
Continuous Mobile Vision. LiKamWa et al. [49] optimize energy
of image sensors. Starfish [50] supports concurrency for multi-
ple vision applications. Gabriel [26] uses cloudlets for cognitive
assistance. OverLay [36] and MARVEL [8] utilize cloud for location-
based mobile AR services. In line with various continuous mobile
vision systems, EagleEye provides a novel AR-based service to
identify missing person(s) in crowded urban spaces.
Mobile Deep Learning. Several studies have tackled the challenge
of on-device deep learning bymodel compression [45, 71], inference
speed acceleration [2, 35, 44, 68], and model size adaptation [54, 70].
However, existing systems mostly focused on running a single DNN
on downsampled images (e.g., 300×300) to analyze one or a small
number of large, primary object(s) in vicinity.

There have been a few attempts to run multiple DNNs on mobile
devices, but they cannot be directly applied for EagleEye. Deep-
Eye [58] parallelizes convolutional layer execution and fully con-
nected layer loading to minimize multi-DNN execution latency.
However, running multi-DNN face identification pipeline in Ea-
gleEye requires optimization in computation rather than memory
footprint. NestDNN [18] adaptively selects DNN from a catalog
generated by pruning based on available resources. This approach
is unlikely to be effective as our primary goal is to execute the face
identification pipeline at low latency without accuracy degradation.
Offloading forMobileVision.MCDNN [28] andDeepDecision [62]
dynamically execute DNN on cloud or mobile based on available re-
sources. VisualPrint [37] offloads extracted features rather than raw
images to save bandwidth. Glimpse [10] tracks objects by offloading
only trigger frames for detection and tracking them in the mobile.
Liu et al. [53] pipeline network transmission and DNN inference
to optimize latency. However, existing systems process the input
image as a whole, either on mobile or cloud at a given time; such
approaches can result in significant latency in case of running com-
plex multi-DNN pipeline. To optimize latency, EagleEye divides the
workload both spatially and temporally based on content analysis
and parallelizes the execution on mobile and cloud.

10 Discussion and Future Work
Generality. The workload of many future multi-DNN-enabled ap-
plications is similar to EagleEye in that they require running a series
of complex DNNs repetitively to detect objects in a high-resolution
scene image and analyze each identified instance (e.g., text identi-
fication, pedestrian identification, etc.). For such applications, our
Content-Adaptive Parallel Execution can be generally adapted to
enhance performance by applying different pipeline depending on

the content and parallelizing the execution over heterogeneous
processors on mobile and cloud.
Integration with Other Features. EagleEye can be integrated
with other identification methods that utilize various human fea-
tures (e.g., gait [66] or sound [7]) to enhance accuracy and robust-
ness in more diverse scenarios. Especially, InSight [66] targets simi-
lar scenarios with EagleEye, but with different feature (i.e., motion).
Furthermore, recent studies on person re-identification [11, 38, 39]
(verifying whether two persons captured from two different cam-
eras match based on entire body analysis) have shown significant
improvement, which can also be combined with EagleEye.
Privacy. EagleEye raises privacy issues in that it takes pictures of
scenes with a number of people present. We would like to note
that our goal is to verify whether the target identity exists in the
public scene (of which taking picture is not illegal), not to analyze
the identities of each individual. Furthermore, our service does not
assume storing any captured scene image.
Future Work.While in this work we focus on optimizing perfor-
mance on a single scene image (as the user can look or move to
a completely different area upon completion of a scene analysis),
we plan to extend EagleEye on continuous image stream analy-
sis, which can enhance performance on two aspects: i) Latency.
Utilizing temporal redundancy of continuous frames, we can save
redundant computations (e.g., by caching in [35, 68]). ii) Accuracy.
Analyzing multiple frames can help LR face recognition accuracy
(whose difficulty mainly comes from lack of information in the
LR face). Furthermore, computer vision community has recently
focused on accurately identifying faces under disguise or imper-
sonation [42]. We plan to incorporate such techniques to diversify
EagleEye’s usage scenarios (e.g., police chasing a criminal). Finally,
we plan to scale EagleEye to a full AR service on smart glasses
with further considerations for computing resources and power
consumption, and evaluate performance in more diverse scenarios
with various levels of crowdedness and network condition settings.

11 Conclusion
In this paper, we presented EagleEye, a wearable camera-based
system to identify missing person(s) in large, crowded urban spaces
in real-time. To further innovate the performance of the state-of-
the-art face identification techniques on LR face recognition, we
designed a novel ICN and a training methodology that utilize the
probes of the target to recover missing facial details in the LR
faces for accurate recognition. We also develop Content-Adaptive
Parallel Execution to run the complexmulti-DNN face identification
pipeline at low latency using heterogeneous processors on mobile
and cloud. Our results show that ICN significantly enhances LR
face recognition accuracy (true positive by 78% with only 14% false
positive), and EagleEye accelerates the latency by 9.07× with only
108 KBytes of data offloaded to the cloud.

Acknowledgments
We sincerely thank our anonymous shepherd and reviewers for
their valuable comments. This work was supported by the National
Research Foundation of Korea (NRF) grant (No. 2019R1C1C1006088).
Youngki Lee is the corresponding author of this work.

EagleEye: Wearable Camera-based Person Identification
in Crowded Urban Spaces MobiCom ’20, September 21–25, 2020, London, United Kingdom

References
[1] N. Ahn, B. Kang, and K.-A. Sohn. Fast, accurate, and lightweight super-resolution

with cascading residual network. In Proc. ECCV, 2018.
[2] S. Bhattacharya and N. D. Lane. Sparsifying deep learning layers for constrained

resource inference on wearables. In Proc. ACM SenSys, 2016.
[3] A. Bulat and G. Tzimiropoulos. How far are we from solving the 2d & 3d face

alignment problem?(and a dataset of 230,000 3d facial landmarks). In Proceedings
of the IEEE International Conference on Computer Vision, pages 1021–1030, 2017.

[4] A. Bulat and G. Tzimiropoulos. Super-FAN: Integrated facial landmark localiza-
tion and super-resolution of real-world low resolution faces in arbitrary poses
with gans. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 109–117, 2018.

[5] J. Canny. A computational approach to edge detection. In Readings in computer
vision, pages 184–203. Elsevier, 1987.

[6] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. VGGFace2: A dataset for
recognising faces across pose and age. In 2018 13th IEEE International Conference
on Automatic Face & Gesture Recognition (FG 2018), pages 67–74. IEEE, 2018.

[7] J. Chauhan, Y. Hu, S. Seneviratne, A.Misra, A. Seneviratne, and Y. Lee. BreathPrint:
Breathing acoustics-based user authentication. In Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services, pages
278–291. ACM, 2017.

[8] K. Chen, T. Li, H.-S. Kim, D. E. Culler, and R. H. Katz. MARVEL: Enabling mobile
augmented reality with low energy and low latency. In Proceedings of the 16th
ACM Conference on Embedded Networked Sensor Systems, pages 292–304. ACM,
2018.

[9] S. Chen, Y. Liu, X. Gao, and Z. Han. MobileFaceNets: Efficient CNNs for accurate
real-time face verification on mobile devices. In Chinese Conference on Biometric
Recognition, pages 428–438. Springer, 2018.

[10] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan. Glimpse:
Continuous, real-time object recognition on mobile devices. In Proceedings of
the 13th ACM Conference on Embedded Networked Sensor Systems, pages 155–168.
ACM, 2015.

[11] W. Chen, X. Chen, J. Zhang, and K. Huang. Beyond triplet loss: a deep quadruplet
network for person re-identification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 403–412, 2017.

[12] Y. Chen, Y. Tai, X. Liu, C. Shen, and J. Yang. FSRNet: End-to-end learning face
super-resolution with facial priors. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2492–2501, 2018.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. IEEE, 2009.

[14] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. ArcFace: Additive angular margin loss
for deep face recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4690–4699, 2019.

[15] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou. RetinaFace: Single-stage
dense face localisation in the wild. arXiv preprint arXiv:1905.00641, 2019.

[16] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network
for image super-resolution. In European conference on computer vision, pages
184–199. Springer, 2014.

[17] EyeSight Rapter AR Glass. https://everysight.com/about-raptor/. Accessed: 15
Dec. 2019.

[18] B. Fang, X. Zeng, and M. Zhang. NestDNN: Resource-aware multi-tenant on-
device deep learning for continuous mobile vision. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking, pages
115–127. ACM, 2018.

[19] K. R. Farrell, R. J. Mammone, and K. T. Assaleh. Speaker recognition using neural
networks and conventional classifiers. IEEE Transactions on speech and audio
processing, 2(1):194–205, 1994.

[20] M. Gao, R. Yu, A. Li, V. I. Morariu, and L. S. Davis. Dynamic zoom-in network
for fast object detection in large images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 6926–6935, 2018.

[21] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[22] TensorFlow-Lite Object Detection Demo. https://www.tensorflow.org/lite/
models/object_detection/overview. 15 Dec. 2019.

[23] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved
training of wasserstein gans. InAdvances in Neural Information Processing Systems,
pages 5767–5777, 2017.

[24] J. Guo and H. Chao. One-to-many network for visually pleasing compression
artifacts reduction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3038–3047, 2017.

[25] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. MS-Celeb-1M: A dataset and benchmark
for large-scale face recognition. In European Conference on Computer Vision, pages
87–102. Springer, 2016.

[26] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan. Towards
wearable cognitive assistance. In Proceedings of the 12th annual international

conference on Mobile systems, applications, and services, pages 68–81. ACM, 2014.
[27] J. Han and B. Bhanu. Individual recognition using gait energy image. IEEE

transactions on pattern analysis and machine intelligence, 28(2):316–322, 2005.
[28] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy.

MCDNN: An approximation-based execution framework for deep stream process-
ing under resource constraints. In Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services, pages 123–136. ACM,
2016.

[29] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[30] L. He, H. Li, Q. Zhang, and Z. Sun. Dynamic feature learning for partial face
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7054–7063, 2018.

[31] A. Howard, M. Zhu, K.-D. Chen, B., W. Wang, T. Weyand, M. An-dreetto, and
H. Adam. MobileNets: Efficient convolutional neural networks for mobile vision
applications. In arXiv preprint arXiv:1704.04861, 2017.

[32] J. Hu, A. Shearer, S. Rajagopalan, and R. LiKamWa. Banner: An image sensor
reconfiguration framework for seamless resolution-based tradeoffs. In Proceedings
of the 17th Annual International Conference on Mobile Systems, Applications, and
Services, pages 236–248. ACM, 2019.

[33] P. Hu and D. Ramanan. Finding tiny faces. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 951–959, 2017.

[34] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the
wild: A database for studying face recognition in unconstrained environments.
Technical Report 07-49, University of Massachusetts, Amherst, October 2007.

[35] L. N. Huynh, Y. Lee, and R. K. Balan. DeepMon: Mobile gpu-based deep learning
framework for continuous vision applications. In Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services, pages
82–95. ACM, 2017.

[36] P. Jain, J. Manweiler, and R. Roy Choudhury. OverLay: Practical mobile aug-
mented reality. In Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services, pages 331–344. ACM, 2015.

[37] P. Jain, J. Manweiler, and R. Roy Choudhury. Low bandwidth offload for mobile
ar. In Proceedings of the 12th International on Conference on emerging Networking
EXperiments and Technologies, pages 237–251. ACM, 2016.

[38] J. Jiao, W.-S. Zheng, A. Wu, X. Zhu, and S. Gong. Deep low-resolution person
re-identification. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[39] X.-Y. Jing, X. Zhu, F. Wu, X. You, Q. Liu, D. Yue, R. Hu, and B. Xu. Super-
resolution person re-identification with semi-coupled low-rank discriminant
dictionary learning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 695–704, 2015.

[40] M. Kampf, I. Nachson, and H. Babkoff. A serial test of the laterality of familiar
face recognition. Brain and cognition, 50(1):35–50, 2002.

[41] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative
adversarial networks. arXiv preprint arXiv:1812.04948, 2018.

[42] V. Kushwaha, M. Singh, R. Singh, M. Vatsa, N. Ratha, and R. Chellappa. Disguised
faces in the wild. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 1–9, 2018.

[43] S. K. Lam, A. Pitrou, and S. Seibert. Numba: A llvm-based python jit compiler. In
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC,
page 7. ACM, 2015.

[44] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and
F. Kawsar. DeepX: A software accelerator for low-power deep learning infer-
ence on mobile devices. In Proceedings of the 15th International Conference on
Information Processing in Sensor Networks, page 23. IEEE Press, 2016.

[45] N. D. Lane, P. Georgiev, and L. Qendro. DeepEar: robust smartphone audio sensing
in unconstrained acoustic environments using deep learning. In Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing,
pages 283–294. ACM, 2015.

[46] M. B. Lewis and A. J. Edmonds. Face detection: Mapping human performance.
Perception, 32(8):903–920, 2003.

[47] J. Lezama, Q. Qiu, and G. Sapiro. Not afraid of the dark: NIR-VIS face recognition
via cross-spectral hallucination and low-rank embedding. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 6628–6637,
2017.

[48] P. Li, L. Prieto, D. Mery, and P. J. Flynn. On low-resolution face recognition in
the wild: Comparisons and new techniques. IEEE Transactions on Information
Forensics and Security, 14(8):2000–2012, 2019.

[49] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong, and P. Bahl. Energy charac-
terization and optimization of image sensing toward continuous mobile vision.
In Proceeding of the 11th annual international conference on Mobile systems, appli-
cations, and services, pages 69–82. ACM, 2013.

[50] R. LiKamWa and L. Zhong. Starfish: Efficient concurrency support for computer
vision applications. In Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services, pages 213–226. ACM, 2015.

[51] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee. Enhanced deep residual networks
for single image super-resolution. In Proceedings of the IEEE Conference on

https://everysight.com/about-raptor/
https://www.tensorflow.org/lite/models/object_detection/overview
https://www.tensorflow.org/lite/models/object_detection/overview

MobiCom ’20, September 21–25, 2020, London, United Kingdom Juheon Yi, Sunghyun Choi, and Youngki Lee

Computer Vision and Pattern Recognition Workshops, pages 136–144, 2017.
[52] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature

pyramid networks for object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2117–2125, 2017.

[53] L. Liu, H. Li, and M. Gruteser. Edge assisted real-time object detection for mobile
augmented reality. In Proceedings of the 24th Annual International Conference on
Mobile Computing and Networking. ACM, 2019.

[54] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du. On-demand deep model
compression for mobile devices: A usage-driven model selection framework.
In Proceedings of the 16th Annual International Conference on Mobile Systems,
Applications, and Services, pages 389–400. ACM, 2018.

[55] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song. SphereFace: Deep hypersphere
embedding for face recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 212–220, 2017.

[56] G. Lu, W. Ouyang, D. Xu, X. Zhang, Z. Gao, and M.-T. Sun. Deep kalman filtering
network for video compression artifact reduction. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 568–584, 2018.

[57] E. S. Lubana and R. P. Dick. Digital foveation: An energy-aware machine vision
framework. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 37(11):2371–2380, 2018.

[58] A. Mathur, N. D. Lane, S. Bhattacharya, A. Boran, C. Forlivesi, and F. Kawsar.
DeepEye: Resource efficient local execution of multiple deep vision models using
wearable commodity hardware. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, pages 68–81. ACM, 2017.

[59] M. Najibi, P. Samangouei, R. Chellappa, and L. S. Davis. SSH: Single stage headless
face detector. In Proceedings of the IEEE International Conference on Computer
Vision, pages 4875–4884, 2017.

[60] L. B. Neto, F. Grijalva, V. R. M. L. Maike, L. C. Martini, D. Florencio, M. C. C.
Baranauskas, A. Rocha, and S. Goldenstein. A kinect-based wearable face recogni-
tion system to aid visually impaired users. IEEE Transactions on Human-Machine
Systems, 47(1):52–64, 2016.

[61] S. Panchanathan, S. Chakraborty, and T. McDaniel. Social interaction assistant: a
person-centered approach to enrich social interactions for individuals with visual
impairments. IEEE Journal of Selected Topics in Signal Processing, 10(5):942–951,
2016.

[62] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen. DeepDecision: A mobile deep
learning framework for edge video analytics. In IEEE INFOCOM 2018-IEEE

Conference on Computer Communications, pages 1421–1429. IEEE, 2018.
[63] J. Redmon and A. Farhadi. YOLO9000: Better, faster, stronger. In IEEE CVPR,

2017.
[64] V. Ruzicka and F. Franchetti. Fast and accurate object detection in high resolution

4k and 8k video using gpus. In 2018 IEEE High Performance extreme Computing
Conference (HPEC), pages 1–7. IEEE, 2018.

[65] X. Tang, D. K. Du, Z. He, and J. Liu. Pyramidbox: A context-assisted single shot
face detector. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 797–813, 2018.

[66] H. Wang, X. Bao, R. Roy Choudhury, and S. Nelakuditi. Visually fingerprinting
humans without face recognition. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services, pages 345–358. ACM,
2015.

[67] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu. CosFace:
Large margin cosine loss for deep face recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5265–5274, 2018.

[68] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu. DeepCache: Principled cache for
mobile deep vision. In Proceedings of the 24th Annual International Conference on
Mobile Computing and Networking, pages 129–144. ACM, 2018.

[69] S. Yang, P. Luo, C.-C. Loy, and X. Tang. WIDER FACE: A face detection benchmark.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 5525–5533, 2016.

[70] S. Yao, Y. Zhao, H. Shao, S. Liu, D. Liu, L. Su, and T. Abdelzaher. FastDeepIoT:
Towards understanding and optimizing neural network execution time on mobile
and embedded devices. In Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems, pages 278–291. ACM, 2018.

[71] X. Zeng, K. Cao, and M. Zhang. MobileDeepPill: A small-footprint mobile deep
learning system for recognizing unconstrained pill images. In Proceedings of
the 15th Annual International Conference on Mobile Systems, Applications, and
Services, pages 56–67. ACM, 2017.

[72] R. Zhang. Making convolutional networks shift-invariant again. International
Conference on Machine Learning (ICML), 2019.

[73] Y. Zhao, S. Wu, L. Reynolds, and S. Azenkot. A face recognition application for
people with visual impairments: Understanding use beyond the lab. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems, page 215.
ACM, 2018.

	Abstract
	1 Introduction
	2 Motivating Scenarios
	3 Preliminary Studies
	3.1 How Fast Can Humans Identify Faces?
	3.2 DNN-Based Face Recognition: Status Quo
	3.3 How Fast Can DNNs Identify Faces?
	3.4 Summary

	4 EagleEye: System Overview
	4.1 Design Considerations
	4.2 Operational Flow

	5 Identity Clarification-Enabled Face Identification Pipeline
	5.1 Face Detection
	5.2 Identity Clarification Network
	5.3 Face Recognition and Service Provision

	6 Real-Time Multi-DNN Execution
	6.1 Workload Characterization
	6.2 Content-Adaptive Parallel Execution

	7 EagleEye Implementation
	8 Evaluation
	8.1 Experiment Setup
	8.2 Performance Overview
	8.3 Identity Clarification Network
	8.4 Content-Adaptive Parallel Execution
	8.5 Performance for Varying Crowdedness
	8.6 Performance on Other Mobile Devices

	9 Related Work
	10 Discussion and Future Work
	11 Conclusion
	Acknowledgments
	References

